Field Efficacy Trials

Company Name

Cutting Edge Formulations, Inc.

Product Identification

Nature's AvengerTM Organic Herbicide Concentrate EPA Reg. No. 82052 – 1_ [D-Limonene: 70%]

Author

Various

Collated by: Olav Messerschmidt (OMC Ag Consulting)

Volume Number

5 of 5

These Data have been Reviewed By: 8-13-07

ANC 227382

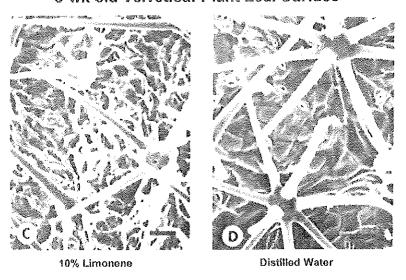
Study Completion Date

March 14, 2007

Field Efficacy Trials Table of Contents

Study Title	Attachment #
Field Efficacy Data Trials Summary	1
Ralph Zingaro, White Mountain Horticultural Consulting, Petaluma,	
CA, November 28, 2006. Trial #11-19-2006 - Concentrate Rate	2
Trial	
Ralph Zingaro, White Mountain Horticultural Consulting, Petaluma,	
CA, November 11, 2006. Trial #11-19-2006 - RTU and	3
Concentrate	
Ralph Zingaro, White Mountain Horticultural Consulting, Yuba City	4
CA, Montna Farms, Jauary, 12, 2007 - Concentrate Rate Trial	4
Brooks Bauer, Two Bees Ag Research and Consulting, Escalon, CA,	
October 27, 2006. Trial ID: Nature's Concentrate - Concentrate	5
Rate Trial	
Brooks Bauer, Two Bees Ag Research and Consulting, Escalon, CA,	
October 27, 2006. Trial ID: Natures RTU - RTU	6
Tom Lanini, University of California, Davis, CA, December 20, 2006 –	7
RTU and Concentrate Rate Trial	7
Marja Koivunen, Marrone Organic Innovations, Davis, CA, November	0
24, 2006 - RTU and Concentrate	8
Duane Ewing, Ewing & Associates, Woodland, CA, December 19,	
2006. Trial ID: NAOEwing - RTU and Concentrate	9
Daniel Forey, Bio Research, Fresno, CA, December 28, 2006. Bio	10
Study # 325-06. RTU and Concentrate	10
Fred Yelverton, North Carolina State University, Raleigh, NC,	11
November 9, 2006. Trial ID#: 07-T10 - RTU	11

Field Efficacy Data Trials Summary


These applications are for the registrations with the following products:

- 1. Nature's Avenger RTU Organic Herbicide (EPA Reg. No. 82052-3)
- 2. Nature's Avenger Organic Herbicide Concentrate (EPA Reg. No. 82052-1)
- 3. GreenMatch Organic Burndown Herbicide (EPA registration pending)

Mode of Action:

The active ingredient in each product is d-limonene which is the primary component of citrus oil (citrus oil contains 92 to 97% d-limonene). d-Limonene or citrus oil is commonly used in many industrial and consumer detergents and soaps due to its excellent degreasing properties. It is this degreasing capability that dissolves the waxy cuticle on plant leaf surfaces. The following electron micrographs by Michigan State University demonstrate the effect of low levels of d-limonene on velvetleaf's leaf surface.

Effect on Plant Cuticle: Scanning Electron Micrograph 8-wk old Velvetleaf Plant Leaf Surface

Results in Field Trials

In support of the California DPR, eleven field trials on 52 weeds were conducted on the following products:

Nature's Avenger RTU Organic Herbicide	EPA Reg. No. 82052-3	17.5% d-limonene
Nature's Avenger Organic Herbicide Concentrate	EPA Reg. No. 82052-1	70% d-limonene
(also called MOI – 001)	LI 11 10g. 140. 62032-1	7070 & Hillonone

The standard in almost all trials is Roundup Herbicide by Monsanto, which is the primary non-selective, burndown herbicide used in the consumer, professional and agricultural markets. Roundup is <u>not</u> an organic herbicide. Another less common, but the only available organic herbicide product for the organic grower is Matran. Matran is a 25(b) product that consists of clove oil and acetic acid. A few trials also used Matran as another standard.

In all trials, Nature's Avenger was significantly and substantially faster acting than Roundup. After a few weeks, Nature's Avenger was equal to or slightly less effective than Roundup. It was typically much more effective than Matran.

During the end of December, 2006 and early January, 2007, there was a cold snap in the Central Valley during which nighttime temperatures were in the low to mid twenties. Trials conducted by Tom Lanini of UC Davis, Duane Ewing of Ewing & Associated, and Daniel Forey of BioResearch all occurred during that time. Performance of Nature's Avenger during that cold spell was substandard (as is typical for all herbicides) but Nature's Avenger efficacy was comparable to Roundup. There is a statement on the GreenMatch label that cautions the user against spraying GreenMatch in very cold conditions.

Cool weather will slow the activity of GreenMatch. For best results, spray when ambient high temperatures are expected above $50^{\circ}F$ and lows above freezing. On cooler days, spray during the warm part of the day.

Summary

Statistically significant results were obtained in all trials. The d-limonene products were significantly faster acting than Roundup and equal to or slightly less than Roundup after a couple of weeks. The d-limonene products outperformed the only commercial organic herbicide on the market, Matran.

Red Sorrel (Rumex acetosella)

Nature's Avenger Organic Herbicide (EPA Reg. No. 82052-1)

Consultant/Applicator:

Ralph Zingaro

White Mt. Horticultural Consulting LLC

4381 Bodega Ave. Petaluma, CA 94952

Report: White Mountain Horticultural Consulting LLC Report Date:			Percent Control Application Date: November 28, 2006						
Treatments		Application Rate (% AI)	7 104 1			4 DAT		AT	
1	Untreated		0.0	c	0.0	c	0.0	С	
2	Nature's Avenger Concentrate	17.5 %	99.75	a	100.0	a	100.0	a	
3	Nature's Avenger Concentrate	14.0 %	97.25	a	97.5	а	97.0	a	
4	Nature's Avenger Concentrate	10.0 %	90.5	Ъ	88.75	ь	86.25	b	
5	Nature's Avenger Concentrate	8.75 %	88.0	b	88.0	ь	84.25	b	
	LSD (P = .05)		3.	31	4.	00	3.	29	

Means followed by same letter do not significantly differ (P=.05, Duncan's New MRT)

Conclusions: Two days after the treatment, Nature's Avenger with 17.5 or 14.0 % provided an almost complete control of *Rumex acetosella*. Nature's Avenger treatments with lower limonene concentrations were slightly inferior.

Redstem filaree (Erodium cicutarium)

Nature's Avenger Organic Herbicide (EPA Reg. No. 82052-1)

Consultant/Applicator:

Ralph Zingaro

White Mt. Horticultural Consulting LLC

4381 Bodega Ave. Petaluma, CA 94952

Report: White Mountain Horticultural Consulting LLC Report Date:			Percent Control Application Date: November 28, 2006							
Treatments		Application Rate (% AI)	2 DAT		4 D	4 DAT		AT		
1	Untreated	0 %	0.0	d	0.0	đ	0.0	d		
2	Nature's Avenger Concentrate	17.5 %	100.0	a	100.0	a	100.0	a		
3	Nature's Avenger Concentrate	14.0 %	99.25	a	99.25	a	98.25	a		
4	Nature's Avenger Concentrate	10.0 %	92.25	ь	90.5	b	89.0	Ъ		
5	Nature's Avenger Concentrate	8.75 %	84.5	С	82.75	С	80.75	С		
LSD (P = .05)		3.17		4.27		4.00				

Means followed by same letter do not significantly differ (P=.05, Duncan's New MRT)

Conclusions: The two Nature's Avenger solutions with the highest limonene concentrations (17.5 and 14.0%) performed similarly providing an almost complete control of *Erodium cicutarium* within two days. Limonene concentration had a significant effect on the % control – the product with 8.75 % limonene being significantly less effective than the tree higher concentrations at all time points.

White Mt. Horticultural Consulting LLC 4381 Bodega Ave. Petaluma, CA 94952 707-781-7235 nhcal@yahoo.com

Efficacy of MOI-001 Concentrate Rate Trial Homeowner Use Herbicide Trial No. 112806

Study Director: Olav Messerschmidt

Affiliation: OMC Ag Consulting representing Cutting Edge Formulations, Inc. of

Buford, GA

Address: 828 Tanglewood Lane, East Lansing, MI 48823

Phone: (517) 881-0106

Email: omesserschmidt@comcast.net

Investigator: Ralph Zingaro

Affiliation: White Mt. Horticultural Consulting LLC

Phone: (707) 781-7235 Email: nhcal@yahoo.com

Trial location: White Mt. Horticultural Consulting LLC, 4381 Bodega Ave,

Petaluma, CA

Products Evaluated:

1. Nature's Avenger Organic Herbicide Concentrate (70% d-Limonene) at various dilutions.

Objective: Determine the efficacy of Nature's Avenger Organic Concentrate Herbicide on representative homeowner weeds.

Conclusions: This trial was conducted at White Mt. Horticultural Consulting in Petaluma, CA. The predominant weed species were Redstem Filaree (*Erodium cicutarium*) and Red Sorrel (*Rumex acetosella*).

Excellent control was observed 2 days after treatment for the 1:3 and 1:4 Concentrate to water dilutions. All treatments performed better than the untreated control; dilution 1:3 gave the best control but the difference between 1:3 and 1:4 was not statistically significant; both 1:3 and 1:4 performed better than the other two dilutions (1:6 and 1:7).

Ralph Zingaro
White Mt. Horticultural Consulting LLC

Site and Design:

Plot Width:	5 Ft.
Plot Length:	15 Ft.
Site Type:	Field
Replications:	4
Study Design:	Randomized Complete Block

Application Description:

Application Date:	Nov. 28, 2006
Time of Day:	1 PM
Application Method:	Spray
Application Placement:	Foliar
Applied By:	R. Zingaro
Air Temperature, Unit:	54°F
% Relative Humidity:	70%
Wind Velocity, Unit:	3 MPH
Dew Presence (Y/N):	N
Water Hardness:	N
% Cloud Cover:	none

Pest Stage At Each Application:

Erodium cicutarium	3 inch
Rumex acetosella	Prostrate

Application Equipment:

Appl. Equipment:	Backpack
Appi. Equipment.	Sprayer
Operating Pressure:	50 PSI
Nozzle Type:	Flat Fan
Nozzle Size:	8012
Nozzle Spacing, Unit:	Inches
Nozzles/Row:	1
Boom Length, Unit:	2 Ft
Boom Height, Unit:	14 ln
Ground Speed, Unit:	1 MPH
Carrier:	Water
Spray Volume:	150
Volume Unit:	Gal/Acre
Propellant:	None
Tank Mix (Y/N):	None

Pest N	ame			Filaree		Red Sorrel	
Rating	Date						
Rating	Data Type	% Cc	ntrol	% Control			
Assessed By Days After Treatment					GARO	R. ZINGARO	
					AT		
Trt #	Treatment Name	% v/v Rate	% w/w Rate (% A.I.)				
1	Untreated Control	0%	0%	0	d	0	С
2	Nature's Avenger Concentrate	25%	17.5%	100	а	100	а
3	Nature's Avenger Concentrate	20%	14%	98.25	а	97	а
4	Nature's Avenger Concentrate	14.3%	10%	89	b	86.5	b
5	Nature's Avenger Concentrate	12.5%	8.75%	80.75	С	84.25	b
	LSD (P=.05)					3.	29
	Standard Dev	iation		2.09	6624		

Pest N	ame			Filaree Red Sorrel			Filaree		Red Sorrel		
Rating	Date										
Rating Data Type % Control Assessed By R. ZINGARO				% Control		% Co	ontrol	% Co	ntrol	% Control	
				R. ZIN	GARO	R. ZINGARO		O R. ZINGARO 4 DAT			
Days A	Days After Treatment 2 DAT			2 [2 DAT 4 DA1						
Trt #	Treatment Name	% v/v Rate	% w/w Rate (% A.I.)								
1	Untreated Control	0%	0%	0	d	0	С	0	d	0	С
2	Nature's Avenger Concentrate	25%	17.5%	100	а	99.75	а	100	а	100	а
3	Nature's Avenger Concentrate	20%	14%	99.25	а	97.25	а	99.25	а	97.5	а
4	Nature's Avenger Concentrate	14.3%	10%	92.25	b	90.5	b	90.5	b	88.75	b
5	Nature's Avenger Concentrate	12.5%	8.75%	84.5	С	88	b	82.75	С	66	b
	LSD (P=.0	5)		3.	17	3.	31	4.:	27	4.	00
	Standard Dev	iation	··	1.66	4582			2.24	0722		

Red Sorrel (Rumex acetosella)

Nature's Avenger Organic Herbicide (EPA Reg. No. 82052-1)

Consultant/Applicator:

Ralph Zingaro

White Mt. Horticultural Consulting LLC

4381 Bodega Ave. Petaluma, CA 94952

Report: White Mountain Horticultural Consulting LLC Trial No: 11-9-2006			Percent Control Application Date: November 11, 2006	
Treatments Application Rate (% AI)		9 DAT		
1	Untreated		0.0	
2	Nature's Avenger RTU	17.5 %	100	
3 Nature's Avenger Concentrate 17.5 %		100		
	LSD $(P = .05)$			

Conclusions: Nine days after the treatment, Nature's Avenger RTU and 1:3 dilution of concentrate, both with 17.5 % limonene, provided a complete control of *Rumex acetosella*.

Redstem filaree (Erodium cicutarium)

Nature's Avenger Organic Herbicide (EPA Reg. No. 82052-1)

Consultant/Applicator:

Ralph Zingaro

White Mt. Horticultural Consulting LLC

4381 Bodega Ave. Petaluma, CA 94952

Report: White Mountain Horticultural Consulting LLC Trial No: 11-9-2006			Percent Control Application Date: November 11, 2006	
Treatments Application Rate (% AI)		9 DAT		
1	Untreated		0.0	
2	Nature's Avenger RTU	17.5 %	100	
3 Nature's Avenger Concentrate 17.5 %		100		
	LSD $(P = .05)$			

Conclusions: The two Nature's Avenger solutions with 17.5 % limonene performed well providing a complete control of *Erodium cicutarium* within nine days.

White Mt. Horticultural Consulting LLC

4381 Bodega Ave. Petaluma, CA 94952 707-781-7235

nhcal@yahoo.com

Efficacy of MOI-001 RTU and Concentrate on California Weeds for Homeowner Use Trial No. 11-19-2006

Study Director: Olav Messerschmidt

Affiliation: OMC Ag Consulting representing Cutting Edge Formulations, Inc. of

Buford, GA

Address: 828 Tanglewood Lane, East Lansing, MI 48823

Phone: (517) 881-0106

Email: omesserschmidt@comcast.net

Investigator: Ralph Zingaro

Affiliation: White Mt. Horticultural Consulting LLC

Phone: (707) 781-7235 Email: nhcal@yahoo.com

Trial location: White Mt. Horticultural Consulting LLC, 4381 Bodega Ave,

Petaluma, CA

Products Evaluated:

- 1. Nature's Avenger Ready To Use Organic Herbicide (17.5% d-Limonene)
- 2. Nature's Avenger Organic Herbicide Concentrate (70% d-Limonene)

Objective: Determine the efficacy of Nature's Avenger Organic RTU and Concentrate Herbicides on representative homeowner weeds.

Conclusions: This trial was conducted at White Mt. Horticultural Consulting in Petaluma, CA. The predominant weed species were Redstem Filaree (*Erodium cicutarium*) and Red Sorrel (*Rumex acetosella*).

Excellent control was observed 1 day after treatment.

Site and Design:

Plot Width:	5 Ft.
Plot Length:	15 Ft.
Site Type:	Field
Replications:	4
Study Design:	Randomized Complete Block

Application Description:

Application Date:	11-19-06
Time of Day:	Afternoon
Application Method:	Spray
Application Placement:	Foliar
Applied By:	R. Zingaro
Air Temperature, Unit:	51.4
% Relative Humidity:	97
Wind Velocity, Unit:	2.2
Wind Direction:	NW
Dew Presence (Y/N):	N
Water Hardness:	N
% Cloud Cover:	25-50

Pest Stage At Each Application:

Erodium cicutarium	3 inch
Rumex acetosella	Prostrate

Application Equipment:

Appl. Equipment:	Backpack	
Appr. Equipment.	Sprayer	
Operating Pressure:	50 PSI	
Nozzle Type:	Flat Fan	
Nozzle Size:	8012	
Nozzle Spacing, Unit:	Inches	
Nozzies/Row:	1	
Boom Length, Unit:	2 Ft	
Boom Height, Unit:	14 In	
Ground Speed, Unit:	1 MPH	
Carrier:	Water	
Spray Volume:	150	
Volume Unit:	Gal/Acre	
Propellant:	None	
Tank Mix (Y/N):	None	

Pest Name		Filaree	Red Sorrel
Rating Date		11-20-06	11-20-06
Rating Data Type		% CONTROL	% CONTROL
Rating Unit		PERCENT	PERCENT
Assessed By		R. ZINGARO	R. ZINGARO
Days After Last Application		1	1
Trt Treatment	Rate		
No. Name	Rate Unit	1	2
1 Untreated Control		0	0
2 Nature's Avenger RTU	100 % v/v	100	100
3 Nature's Avenger Concentrate	25 % v/v	100	100
LSD (P=.05)			
Standard Deviation			
CV			

Note: All reps were either 0% (Treatment 1 - Untreated) or 100% (Treatments 2 and 3). Thus, there was no variability.

Ralph Zingaro

White Mt. Horticultural Consulting LLC

<i>,</i> -		

Common weeds in a walnut orchard, Montna Farms, CA (Avena fatua, Hordeum spp., Sinapis arvensis, Amsinckia spp., Malva neglecta, Sonchus oleraceus, Erodium cicutarium, Rumex crispus, Stellaria media)

Nature's Avenger Organic Herbicide (EPA Reg. No. 82052-1)

Consultant/Applicator:

Name

Lawrence J Marais

Affiliation:

Monterey Ag Resources

Address:

3654 S Willow Ave., Fresno, CA 93745

Report: White Mountain Horticultural Consulting LLC Report Date: February , 2007		Weed Control (scale 1-10) Application Date: January 12, 2007			
	Treatments	Application Rate (% AI)	7 DAT	21 DAT	35 DAT
1	Untreated		1	1	1
2	Nature's Avenger	17.5 %	9	8	5
3	Nature's Avenger	10 %	8.75	8.5	5.5
4	Nature's Avenger	7 %	5	6.25	2.25
5	Matran EC	7 % dilution	7.75	4.25	1.75

Application rate 180 gpa

Numbers in each column are averages of two replicated plots

Conclusions:

Nature's Avenger at dilutions 1:3 (17.5 %) and 1:6 (10 %) provided good and long-lasting control of most weeds in a walnut orchard. The effect was better and lasted longer than that of Matran's. Higher dilution of NAO (1:9) controlled only 50 % of all weeds at best.

White Mt. Horticultural Consulting LLC 4381 Bodega Ave. Petaluma, CA 94952 707-781-7235 nhcal@yahoo.com

Efficacy of MOI-001 Concentrate - Rate Trial

Montna Farms 2007

Study Director:

Lawrence J Marais

Affiliation:

Monterey Ag Resources

Address:

3654 S Willow Ave., Fresno, CA 93745

Phone:

559-430-4366

Email:

Imarais@montereyagresources.com

Investigator:

Ralph Zingaro

Affiliation:

White Mt. Horticultural Consulting LLC

Phone:

(707) 781-7235

Email:

nhcal@yahoo.com

Trial location:

Montna Farms, Yuba City, CA

Products Evaluated:

1. Nature's Avenger Organic (NAO) Herbicide Concentrate (70% d-Limonene) at various dilutions with and without a surfactant.

Objective: Determine the efficacy of Nature's Avenger Organic Concentrate Herbicide on representative weeds in a walnut orchard.

Conclusions:

Nature's Avenger concentrate provided good control of most weeds in the walnut orchard. Dilution had a significant effect on the results — 1:3 dilution (17.5 % limonene) being the most effective treatment. Dilution 1:6 (10% limonene) provided almost as good control of weeds lasting about 4 weeks. Dilution 1:9 (7% limonene) was less effective controlling about 50 % of weeds, and its effect did not last as long as the two higher concentrations' of NAO. Matran EC (used as a control) was less effective than 1:3 and 1:6 with an effect that did not last as long.

Ralph Zingare∕

White Mt. Horticultural Consulting LLC

1/20/07

Date

Site and Design:

Plot Width:	6 Ft.		
Plot Length:	20 Ft.		
Site Type:	Walnut Orchard		
Replications:	2		
Study Design:	Randomized		

Application Description:

Application Date:	Jan 12, 2007
Time of Day:	10 AM
Application Method:	Spray
Application Placement:	Foliar
Applied By:	L J Marais
Air Temperature, Unit:	60 F
% Relative Humidity:	55%
Wind Velocity, Unit:	2 mph
Dew Presence (Y/N):	Y
Water Hardness:	Municipal water
% Cloud Cover:	60%

Pest Stage At Each Application:

grasses	6 - 12 inch
broadleaved	6 - 24 inch

Application Equipment:

Appl. Equipment:	Backpack
	Sprayer
Operating Pressure:	100 psi
Nozzle Type:	Cone
Nozzle Size:	2 mm
Nozzle Spacing, Unit:	Single
Nozzles/Row:	NA
Boom Length, Unit:	NA
Boom Height, Unit:	NA
Ground Speed, Unit:	NA
Carrier:	Water
Spray Volume:	180
Volume Unit:	Gal/Acre
Propeliant:	None
Tank Mix (Y/N):	N

Treatments:

Dilution	% Active ingredient
MOI-001 1:3	17.5 % limonene
MOI-001 1:6	10 % limonene
MOI-001 1:9	7 % limonene
Matran 7 %	3.5 % Clove oil
Surfactant	0.5% (v/v)Yucca

Visual Evaluations:

1 st evaluation – 7 DAT	Jan 19 th
2 nd evaluation – 21 DAT	Feb 2 nd
3 rd evaluation – 35 DAT	Feb 16th
Scale:	1 = no control
	10 = complete
	control

RESULTS

			Weed control (1 = no control, 10 = complete control)					
_				7-day	-	21-Day		35 day
Treatment	rep	species	7 days	overali	21 Days	overall	35 days	overali
1:3	1	wild barley	8		7		5	
17.5%		wild oats	10		7		4	
limonene		clover	7		7		2	
from		wild mustard	10	9	10	8	none	_
Nature's		filaree big	4.5	<u> </u>	5	Ō	1	5
Avenger		sowthistle	10		9		none	
conc.		chickweed	2		2		1	
		brome	1		1		1	
	2	wild oats	8		7		4	
		wild mustard	8		5		4	
		chickweed	10		10		1	
		hare barley	10	9	9	8	5	5
		moss miner's	8.5		9		6	
		lettuce	9.5		10		1	
1:3 +	1	sowthistle	10		10		1	
17.5%		fiddleneck	9.5		8.5		none	
limonene		wild barley	10		7		6	
with		wild mustard	10	9.5	9.5	9	none	6
surfactant	•	clover	9		5		1	
•		chickweed	10		7		none	
					9			
	2	sowthistle	10		10		none	
		fiddleneck	10		10		1	
		wild barley	10	40	9		4	
		wild mustard	10	10	10	9	none	6
		clover	9		5		2	
		chickweed	10		8		1	

Weed control (1 = no control, 10 = complete control)7-day 21-Day 35 day 7 days **Treatment** species 21 Days overali overali rep 35 days overali 1:6 1 wild barley 8 8.5 5 10% clover 9.5 5 1 limonene wild mustard 10 10 1 8.5 8.5 6 from chickweed 8 7 1 concentrate sowthistle 10 10 1 moss 9 9 6 2 filaree, big 6.5 1 1 chickweed 10 7 1 wild mustard 10 8 1 wild oats 10 8 5 9 8.5 clover 5.5 6 5 1 moss 8.5 9 2 fiddleneck 10 10 (big) none wild barley 9 8 5 1:6+ 1 wild mustard 10 10 5 10% chickweed 10 10 1 limonene wild barley 8.5 8 4 with wild oats 9 10 5 7.5 6.5 3 surfactant curly dock 2 1 1 filaree, big 3.5 10 1 sowthistle 9 10 6 2 mallow 2 2 1 dandelion 10 10 4 sowthistle 8 10 2 5 clover 5 1 2 7.5 2 7 filaree, big 1 3.5 7 moss 8.5 5

wild oats

wild mustard

curly dock

10

10

3

7

10

1

4

1

Weed control (1 = no control, 10 = complete control)

				7-day		21-Day		35 day
Treatment	rep	species	7 days	overall	21 Days	overall	35 days	overali
1:9	1	chickweed	9		5	***	1	
7%		wild barley	5		5		3	
limonene		clover	4		4		1	
from		moss	8,5	4.5	9	6	1	_
concentrate		wild oats	4.5	4.5	4	0	2	2
		wild mustard	10		8		1	
		fiddleneck	7		5		1	
		curly dock	1.5		1		1	
	2	wild mustard	10		10		1	
		wild barley	8		7		2	
		clover	6.5		4		1	
		chickweed	8.5	5.5	5	6.5	1	0.5
		fiddleneck	9.5	5.5	10	0.5	none	2.5
		mallow	1.5		1		1	
		wild oats	6.5		5		2	
1:9 + 7% limonene	1	clover filaree, old wild mustard	7.5 5 8.5		6 5 7		1 1 1	
with		chickweed	9		7	_	i	
surfactant		mallow	1.5	5.5	1	5	1	3
		moss	9		9		2	
		wild oats	5		5		3	
		wild barley	4		5		3	
	2	mallow	1.5		1		1	
		wild mustard	8.5		5		1	
		filaree small	5	4.5	4	4.5	1	3.5
		wild barley	7		5	7,0	3.5	5.5
		wild oats	2		4		3	
		chickweed	3		5		1	

		Weed control (1 = no control, 10 = complete control)					ntrolì
			7-day		21-Day	, <u> </u>	35 day
rep	species	7 days	overall	21 Days	overali	35 days	overall
1	moss	5		5		2	
	fiddleneck	10		10		1	
	wild barley	6.5	7.5	5	_	2	2
	wild oats	10	7.5	5	5		
	wild mustard	6		10		1	
	chickweed	8		4		1	
2	mallow	10		5		1	
	sowthistle	10		-10		1	
	wild barley	9		4		1	
	wild oats	8.5	0	5	0.5	1	
	wild mustard	9	0	10	3.5	1	1.5
	moss	6				6	
	chickweed	7.5		4		1	
	clover	7		5		i	
	rep 1	1 moss fiddleneck wild barley wild oats wild mustard chickweed 2 mallow sowthistle wild barley wild oats wild mustard moss chickweed	rep species 7 days 1 moss 5 fiddleneck 10 wild barley 6.5 wild oats 10 wild mustard 6 chickweed 8 2 mallow 10 sowthistle 10 wild barley 9 wild oats 8.5 wild mustard 9 moss 6 chickweed 7.5	rep species 7 days overall 1 moss 5 fiddleneck 10 wild barley 6.5 wild oats 10 wild mustard 6 chickweed 8 2 mallow 10 sowthistle 10 wild barley 9 wild oats 8.5 wild mustard 9 moss 6 chickweed 7.5	rep species 7 days overall 21 Days 1 moss 5 5 fiddleneck 10 10 wild barley 6.5 7.5 5 wild oats 10 5 wild mustard 6 10 chickweed 8 4 2 mallow 10 5 sowthistle 10 10 wild barley 9 4 wild oats 8.5 8 wild mustard 9 10 moss 6 5 chickweed 7.5 4	rep species 7 days 7-day overall 21 Days overall 1 moss 5 fiddleneck 10 wild barley 6.5 wild oats 10 wild mustard 6 chickweed 8 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	rep species 7 days overall overall 21 Days overall 35 days 1 moss 5 fiddleneck 10 wild barley 6.5 wild oats 10 wild oats 10 wild mustard chickweed 8 wild mustard 6 10 11 chickweed 8 wild mustard 6 10 11 chickweed 8 wild barley 9 wild oats 8.5 wild oats 8.5 wild mustard 9 wild oats wild oats 8.5 wild mustard 9 wild oats 6 chickweed 7.5 5 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Overall average ratings:

	average ratings					
treatment	7 DAT	21 DAT	35 DAT			
1:3	9	8	5			
1:3 +	9.75	9	6			
1:6	8.75	8.5	5.5			
1:6 +	7.5	6.75	3.25			
1:9	5	6.25	2.25			
1:9 +	5	4.75	3.25			
Matran	7.75	4.25	1.75			

^{1 =} no control 10 = complete control

		·

Common weeds in a walnut orchard, Montna Farms, CA (Avena fatua, Hordeum spp., Sinapis arvensis, Amsinckia spp., Malva neglecta, Sonchus oleraceus, Erodium cicutarium, Rumex crispus, Stellaria media)

Nature's Avenger Organic Herbicide (EPA Reg. No. 82052-1)

Consultant/Applicator:

Name

Lawrence J Marais

Affiliation:

Monterey Ag Resources

Address:

3654 S Willow Ave., Fresno, CA 93745

_	ort: White Mountain Hortic ort Date: February , 2007	ultural Consulting LLC		0) , 2007	
	Treatments	Application Rate (% AI)	7 DAT	21 DAT	35 DAT
1	Untreated		1	1	1
2	Nature's Avenger	17.5 %	9	8	5
3	Nature's Avenger	10 %	8.75	8.5	5.5
4	Nature's Avenger	7 %	5	6.25	2.25
5	Matran EC	7 % dilution	7.75	4.25	1.75

Application rate 180 gpa

Numbers in each column are averages of two replicated plots

Conclusions:

Nature's Avenger at dilutions 1:3 (17.5 %) and 1:6 (10 %) provided good and long-lasting control of most weeds in a walnut orchard. The effect was better and lasted longer than that of Matran's. Higher dilution of NAO (1:9) controlled only 50 % of all weeds at best.

Mallow (Malva neglecta)

Nature's Avenger Organic Herbicide Concentrate (EPA Reg. No. 82052-1)

Consultant/Applicator:

Name

Brooks Bauer

Affiliation

Two Bees Agricultural Research and Consulting

Address

20592 Ayers Avenue Escalon, CA 95320

Report: Two Bees Ag. Research & Consulting Report Date:			Percent Control Application Date: October 27, 2006			
Treatments		Treatments Application Rate (% AI)		2 DAT		DAT
1	Untreated		0.0	b	0.0	b
2	Nature's Avenger Concentrate	17.5	78.3	a	53.3	a
3	Nature's Avenger Concentrate	14.0	87.0	a	46.7	ь
4	Nature's Avenger Concentrate	10.0	76.7	а	20.0	c ·
5	Nature's Avenger Concentrate	8.75	71.7	a	20.0	С
	LSD $(P = .05)$		15	5.5	(5.6

Pigweed (Amaranthus retroflexus)

Nature's Avenger Organic Herbicide (EPA Reg. No. 82052-1)

Consultant/Applicator:

Name

Brooks Bauer

Affiliation

Two Bees Agricultural Research and Consulting

Address

20592 Ayers Avenue

Escalon, CA 95320

Report: Two Bees Ag. Research & Consulting Report Date:			Percent Control Application Date: October 27, 2006				
	Treatments	Application Rate (% AI)	2 D	AT	7]	DAT	
1	Untreated		0.0	d	0.0	е	
2	Nature's Avenger Concentrate	17.5	96.0	a	90.0	a	
3	Nature's Avenger Concentrate	14.0	86.7	ab	50.0	ь	
4	Nature's Avenger Concentrate	10.0	78.3	b	36.7	С	
5	Nature's Avenger Concentrate	8.75	50.0	С	20.0	d	
	LSD (P = .05)		10).6			

Common purslane (Portulaca oleracea)

Nature's Avenger Organic Herbicide (EPA Reg. No. 82052-1)

Consultant/Applicator:

Name

Brooks Bauer

Affiliation

Two Bees Agricultural Research and Consulting

Address

20592 Ayers Avenue

Escalon, CA 95320

Report: Two Bees Ag. Research & Consulting Report Date:			Percent Control Application Date: October 27, 2006				
Treatments		Application Rate (% AI)	2 DAT		7 DAT		
1	Untreated		0.0	c	0.0	d	
2	Nature's Avenger Concentrate	17.5	86.7	а	81.0	а	
3	Nature's Avenger Concentrate	14.0	79.3	a	68.3	ь	
4	Nature's Avenger Concentrate	10.0	55.0	ь	38.3	С	
5	Nature's Avenger Concentrate	8.75	51.7	Ъ	30.0	С	
LSD (P = .05)			14.2		ç	9.8	

Prickly lettuce (Lactuca serriola)

Nature's Avenger Organic Herbicide (EPA Reg. No. 82052-1)

Consultant/Applicator:

Name

Brooks Bauer

Affiliation

Two Bees Agricultural Research and Consulting

Address

20592 Ayers Avenue

Escalon, CA 95320

Report: Two Bees Ag. Research & Consulting Report Date:			Percent Control Application Date: October 27, 2006				
Treatments		Application Rate (% AI)	2 DAT		7 DAT		
1	Untreated		0.0	ь	0.0	d	
2	Nature's Avenger Concentrate	17.5	73.3	a	81.3	a	
3	Nature's Avenger Concentrate	14.0	68.3	a	61.7	b	
4	Nature's Avenger Concentrate	10.0	63.3	a	61.7	b	
5	Nature's Avenger Concentrate	8.75	68.3	a	33.3	С	
	LSD (P = .05)			8.5		8.3	

Annual bluegrass (Poa annua)

Nature's Avenger Organic Herbicide (EPA Reg. No. 82052-1)

Consultant/Applicator:

Name

Brooks Bauer

Affiliation

Two Bees Agricultural Research and Consulting

Address

20592 Ayers Avenue

Escalon, CA 95320

Report: Two Bees Ag. Research & Consulting Report Date:			Percent Control Application Date: October 27, 2006				
Treatments		Application Rate (% AI)	2 DAT		7 DAT		
1	Untreated		0.0	d	0.0	d	
2	Nature's Avenger Concentrate	17.5	91.7	а	87.7	a	
3	Nature's Avenger Concentrate	14.0	88.3	ab	68.3	ь	
4	Nature's Avenger Concentrate	10.0	73.3	bc	63.3	ь	
5	Nature's Avenger Concentrate	8.75	67.7	c	43.3	С	
	LSD (P = .05)			13.6		12.1	

Shepherd's purse (Capsella bursa-pastoris)

Nature's Avenger Organic Herbicide (EPA Reg. No. 82052-1)

Consultant/Applicator:

Name

Brooks Bauer

Affiliation

Two Bees Agricultural Research and Consulting

Address

20592 Ayers Avenue

Escalon, CA 95320

Report: Two Bees Ag. Research & Consulting Report Date:			Percent Control Application Date: October 27, 2006			
Treatments		Application Rate (% AI)	2 DAT		7 DAT	
1	Untreated		0.0	c	0.0	d
2	Nature's Avenger Concentrate	17.5	100.0	a	90.0	a
3	Nature's Avenger Concentrate	14.0	100.0	а	71.0	b
4	Nature's Avenger Concentrate	10.0	93.3	ab	66.7	Ъ
5	Nature's Avenger Concentrate	8.75	82.7	b	40.0	c
	LSD $(P = .05)$		13.1		9.8	

Annual sowthistle (Sonchus oleraceus)

Nature's Avenger Organic Herbicide (EPA Reg. No. 82052-1)

Consultant/Applicator:

Name

Brooks Bauer

Affiliation

Two Bees Agricultural Research and Consulting

Address

20592 Ayers Avenue

Escalon, CA 95320

-	ort: Two Bees Ag. Research & Cort Date:	onsulting	Percent Control Application Date: October 27, 2006				
	Treatments	Application Rate (% AI)	2 D	AT	7]	DAT	
1	Untreated	-	0.0	b	0.0	d	
2	Nature's Avenger Concentrate	17.5	90.0	a	73.3	a	
3	Nature's Avenger Concentrate	14.0	81.7	a	64.3	b	
4	Nature's Avenger Concentrate	10.0	84.3	a	61.0	b	
5	Nature's Avenger Concentrate	8.75	88.3	a	30.0	c	
	LSD (P = .05)		12	2.7	5	5.0	

Lambsquarters (Chenopodium album)

Nature's Avenger Organic Herbicide (EPA Reg. No. 82052-1)

Consultant/Applicator:

Name

Brooks Bauer

Affiliation

Two Bees Agricultural Research and Consulting

Address

20592 Ayers Avenue

Escalon, CA 95320

	rt: Two Bees Ag. Research & Cort Date:	Applica October				
	Treatments	Application Rate (% AI)	2 D	AT	7]	DAT
1	Untreated		0.0	С	0.0	d
2	Nature's Avenger Concentrate	17.5	94.3	a	81.0	a
3	Nature's Avenger Concentrate	14.0	74.0	b	65.0	b
4	Nature's Avenger Concentrate	10.0	66.7	ь	61.7	b
5	Nature's Avenger Concentrate	8.75	71.7	Ъ	33.3	С
	LSD $(P = .05)$	·	11	.2	(5.8

NATURE'S AVENGER ORGANIC - CONCENTRATE EFFICACY EVALUATIONS

Trial ID: NATURE'S CONCENTRATE

Location: ESCALON, CA

Protocol ID:

Study Director: OLAV MESSERSCHMIDT

Investigator: Brooks Bauer

General Trial Information

Study Director: OLAV MESSERSCHMIDT

OMC AG CONSULTING

Title: OWNER

Affiliation: Postal Code:

E-mail: OMESSERSCHMIDT@COMCAST.NET

Investigator:

Affiliation:

Brooks Bauer

Title: FIELD SCIENTIST

ONE-YEAR/FINAL

Postal Code:

TWO BEES AGRICULTURAL RESEARCH AND CONSULTING

E-mail: BBAUER@TWOBEESAG.COM

Keywords:

Trial Location

City: Escalon

State/Prov : CA

Postal Code: 95320 USA Country:

-Latitude of LL Corner °: Altitude of LL Corner:

Map Reference: Directions:

Unit:

Trial Status: Trial Reliability:

HIGH 10-27-2006 Initiation Date: Planned Completion Date: 11-15-2006

-Longitude of LL Corner °

Angle y-axis to North :

Conducted Under GLP: Conducted Under GEP:

Official Trial Code: Other Trial Code:

	Guideline	Description
1.		

Objectives:

DÉTERMINE THE EFFICACY OF NATURE'S AVENGER ORGANIC HERBICIDE ON REPRESENTATIVE HOMEOWNER WEEDS.

Conclusions:

This trial was conducted at the Two Bees Agricultural Research Farm near Escalon, CA, on the weeds listed in this report. The application and evaluations were conducted following the protocol provided.

Application Note: Foaming increased in the spray bottle as the concentration of Nature's Avenger increased. The degree of foaming, even at the highest concentration, was well within limits of commercial acceptability.

Nature's Avenger Concentrate provided fair to very good control of weeds at the 25% V/V dose (highest rate tested). Very good control was recorded on pigweed species, Annual Bluegrass, Shepherd's Purse, Annual Sowthistle, and Lambsquarters. Fair control was recorded for Malva and Prickly Lettuce and moderate control of purselane.

Lower doses of Natures's Avenger Concentrate resulted in less weed control and a significant dose response resulted. Control diminished from 4 DAT to 7 DAT due to re-greening.

Cooperator/Landowner

Cooperator:

BROOKS BAUER

Country:

Organization: TWO BEES AGRICULTURAL RESEARCH Address 1:

20592 AYERS AVENUE

Phone No: 209-838-0606 Fax No: 209-838-3639

Address 2:

City: State/Prov: ESCALON

Postal Code:

95320

E-mail: BBAUER@TWOBEESAG.COM

CM-07

Crop Description Crop 1: N.A. |Variety: N.A. Description: N.A. BBCH Scale: Planting Date: Planting Method: Rate, Unit: Perennial Age, Unit: Spacing Within Row, Unit: Depth, Unit: Row Spacing, Unit: Seed Bed: Soil Temperature, Unit: Soil Moisture: Emergence Date: Harvest Date: Harvest Equipment: Harvested Width, Unit: Harvested Length, Unit: % Standard Moisture: Moisture Meter: Weighing Equipment:

Pest Description Code: MALNE Malva neglecta Pest 1 Type: W Common Name: Cheeseplant Description: Pest 2 Type: W Code: STEME Stellaria media Common Name: Common chickweed Description: Code: POROL Portulaca oleracea Pest 3 Type: W Common Name: Purslane, common Description: Pest 4 Type: W Code: LACSE Lactuca serriola Common Name: Lettuce, prickly Description: Pest 5 Type: W Code: AMARE Amaranthus retroflexus Common Name: PIGWEED Description: Pest 6 Type: W Code: POAAN Poa annua Common Name: Annual bluegrass Description: Code: CAPBP Pest 7 Type: W Capsella bursa-pastoris Common Name: Shepherd's purse Description: Pest 8 Type: W Code: AMAGR Amaranthus graecizans Common Name: Pigweed, tumbling Description: Pest 9 Type: W Code: SONOL Sonchus oleraceus Common Name: Annual sowthistle Description: Pest10 Type: W Code: CHEAL Chenopodium album Common Name: Lambsquarters, common Description:

Site and Design

Plot Width, Unit: 5 FT Site Type: FIELD Plot Length, Unit: 15 FT Tillage Type: NO TILL

Replications: 3 Study Design: Randomized Complete Block

% Slope: Soil Drainage:

Trial Initiation Comments:

Previous Crops Previous Pesticides Year
1.

Maintenance

Maintenance Form Form Form Rate Tank
No. Date Treatment Name Conc Unit Type Rate Unit Mix
1.

Comment:

Field Prep./Maintenance:

Two Bees Agricultural Research & Consulting Soil Description

Description Name:

% OM: % Sand:

pH: CEC: Texture: Soil Name: Fert. Level:

% Clay: Analyzed By:

% Silt:

Additional Measured Elements

Element	Quantity	Unit

Moisture Conditions

Overall Moisture Conditions: Closest Weather Station:

Distance:

Unit:

	Date	Time	Amount Unit	Туре	Interval	Unit
1.			1			

Application Description

Appricación
A
10-27-2006
12:45
SPRAY
FOLIARGTH
FOLIAR
B. BAUER
75 F
26
3 мрн
W
N
N.A.
0

Crop Stage At Each Application

	A
Crop 1 Code, BBCH Scale:	
Stage Scale Used:	
Stage Majority, Percent:	
Stage Minimum, Percent:	
Stage Maximum, Percent:	
Diameter, Unit:	
Height, Unit:	
Height Minimum, Maximum:	

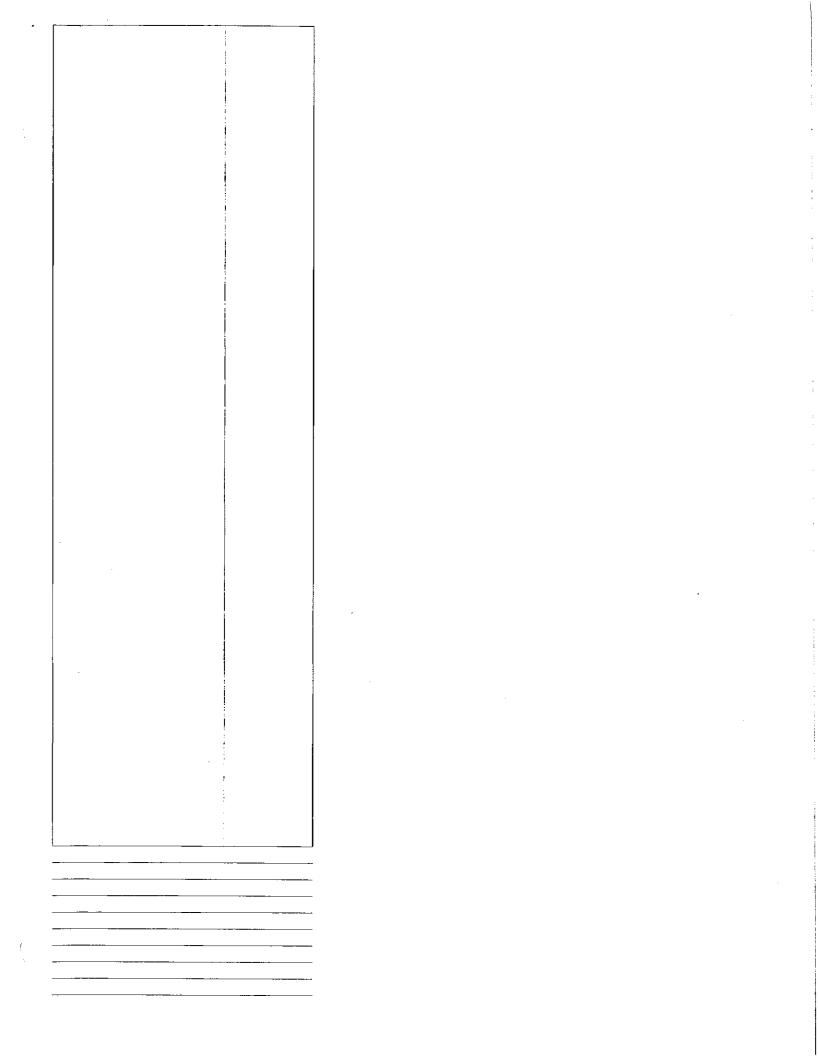
Pest Stage At Each Application

Pest 1 Code, Disc., Scale: MALNE W DESC Stage Majority, Percent: 6 INCH 100

Stage Minimum, Percent:

Stage Maximum, Percent:

Diameter, Unit:


Height, Unit:

Height Minimum, Maximum:

Density, Unit:

Coverage, Unit:

•					
			,		
		•			

1 44 (<i>,</i>	766	73	Ví
Pest 2 Code, Disc., Scale:	: S	TEME	W	DESC
Stage Majority, Percent:	6	INCH	10	0
Stage Minimum, Percent:				
Stage Maximum, Percent:				
Diameter, Unit:	1		•••	
Height, Unit:	;	••		
Height Minimum, Maximum:	: i			
Density, Unit:	1			
Coverage, Unit:	┿			
Pest 3 Code, Disc., Scale:	. D	OBOT	Ta	DECC
	 -			
Stage Majority, Percent:	- 3	INCH	10	<u> </u>
Stage Minimum, Percent:	╀			
Stage Maximum, Percent:	╄			
Diameter, Unit:	1			
Height, Unit:	<u>į </u>			
Height Minimum, Maximum:	:]			
Density, Unit:				
Coverage, Unit:				
Pest 4 Code, Disc., Scale:	L	ACSE	W	DESC
Stage Majority, Percent:	6	INCH	10	0
Stage Minimum, Percent:				
Stage Maximum, Percent:	ļ			
Diameter, Unit:	T-			
Height, Unit:				
Height Minimum, Maximum:	-			
Density, Unit:	+			
Coverage, Unit:	i			
Pest 5 Code, Disc., Scale:	AI	MARE.	100	DESC
Stage Majority, Percent:				
Stage Minimum, Percent:	+	117011		
Stage Maximum, Percent:	十			
Diameter, Unit:	+			
Height, Unit:	+			
Height Minimum, Maximum:	+			
· · · · · · · · · · · · · · · · · · ·	-			
Density, Unit:	╄			
Coverage, Unit:	Ļ			
Pest 6 Code, Disc., Scale:	+			
Stage Majority, Percent:	3	INCH	10	0
Stage Minimum, Percent:	Ĺ.,			
Stage Maximum, Percent:	<u> </u>			
Diameter, Unit:	<u> </u>			
Height, Unit:	<u>.</u>			
Height Minimum, Maximum:	!			
Density, Unit:		•	·	
Coverage, Unit:	,			
Pest 7 Code, Disc., Scale:	CF	PBP	W	
Stage Majority, Percent:				
Stage Minimum, Percent:				
Stage Maximum, Percent:				
Diameter, Unit:				
Height, Unit:				
Height Minimum, Maximum:	-			
Dengity Unit:				
Density, Unit:		•		
Density, Unit: Coverage, Unit: Pest 8 Code, Disc., Scale:	:		W	

Stage Minimum, Percent:		
Stage Maximum, Percent:	1	
Diameter, Unit:		
Height, Unit:	:	
Height Minimum, Maximum:	!	
Density, Unit:	!	
Coverage, Unit:		
Pest 9 Code, Disc., Scale:	SONOL	W
Stage Majority, Percent:		
Stage Minimum, Percent:		
Stage Maximum, Percent:		·
Diameter, Unit:		
Height, Unit:		
Height Minimum, Maximum:		
Density, Unit:	,	
Coverage, Unit:		
Pest10 Code, Disc., Scale:	CHEAL	W
Stage Majority, Percent:		
Stage Minimum, Percent:	-	
Stage Maximum, Percent:		
Diameter, Unit:		
Height, Unit:		
Height Minimum, Maximum:		
Density, Unit:		
Coverage, Unit:		
coverage, onic:		

Application Equipment

	A
Appl. Equipment:	CO2 SPRAYER
Operating Pressure, Unit:	50 PSI
Nozzle Type:	FLAT FAN
Nozzle Size:	8012
Nozzle Spacing, Unit:	22 IN
Nozzles/Row:	2
Nozzle Calibration, Unit:	
Band Width, Unit:	N.A.
Boom ID:	
Boom Length, Unit:	4 FT
Boom Height, Unit:	14 IN
Ground Speed, Unit:	1 мрн
Incorporation Equip.:	N.A.
Hours to Incorp.:	
Incorp. Depth, Unit:	:
Carrier:	WATER
Spray Volume, Unit:	150 GAL/AC
Mix Size, Unit:	
Spray pH:	6.8
Propellant:	C02
Tank Mix (Y/N):	N

Equipment Comment:

Trt No Treatment Application Comment

Date

Ву

Notes

Date

Βv

Deviations

2-22-2007 (NATURE'S CONCENTRATE - REVISED) Two Bees Agricultural Research & Consulting

Reasons:

NATURE'S AVENGER ORGANIC - CONCENTRATE EFFICACY EVALUATIONS

Trial ID: NATURE'S CONCENTRATE

Location: ESCALON, CA

Study Director: OLAV MESSERSCHMIDT Investigator: Brooks Bauer

Pest Type	W Weed	W Weed	W Weed	W Weed	W Weed	W Weed	W Weed	W Weed
Pest Code	MALNE	AMARE	AMAGR	POROL	POAAN	CAPBP	SONOL	CHEAL
Pest Name		Pigweed, Re>	Pigweed, tu>	Purslane, c>	Annual blue>	Shepherd's >	Annual sowt>	Lambsquarte>
Crop Code	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
BBCH Scale								
Crop Name	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
Crop Variety	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
Description								1 4.7 1,
Part Rated	PLADEA P	PLADEA P	PLADEA P	PLADEA P	PLADEA P	PLADEA P	PLADEA P	PLADEA P
Rating Date	10-29-2006	10-29-2006	10-29-2006	10-29-2006	10-29-2006	10-29-2006	10-29-2006	10-29-2006
Rating Data Type	% CONTROL	% CONTROL.	% CONTROL					
Rating Unit	PERCENT	PERCENT	PERCENT	PERCENT	PERCENT	PERCENT	PERCENT	PERCENT
Sample Size						,,,,	LINOLINI	, LIVOLIA)
Sample Size Unit								
Collection Basis								
Collection Basis Unit								
Number of Subsamples		}						
Crop Stage	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
Crop Stage Scale		1	74.54.	14.7 (.	14.57.	IN.A.	IN.A.	N.A.
Crop Density, Unit								
Pest Stage								
Pest Density, Unit								
Footnote Number								
Assessed By	B. BAUER	B. BAUER	B. BAUER	B. BAUER	B. BAUER	D DALIED	D DALIED	D BALLED
SE Name	D. DAULK	D. DAULK	B. DAUER	B. DAUER	B. BAUER	B. BAUER	B. BAUER	B. BAUER
SE Description								
Rating Timing								
Days After First/Last Applic.	2	2	2	,				_i
Trt-Eval Interval	1 DA-A	1 DA-A	2 1 DA-A	4 12 4 4	2	2	2	2
Plant-Eval Interval	I DA-A	I DA-A	I DA-A	1 DA-A				
ARM Action Codes								
Sort Order for View								
Number of Decimals	;							
Trt Treatment								
No. Name								
1 UNTREATED CONTROL	0.0 b	0.0 d	0.0 d	0.0 с	0.0 d	0.0 с	0.0 b	
7 3111125 33111132	0.0 5	0.5 G	0.0 u	0.0 0	0.0 u	0.0 6	α υ.υ	0.0 c
2 NATURE'S AVENGER	78.3 a	96.0 a	96.0 a	86.7 a	91.7 a	100.0 a	90.0 a	94.3 a
		1						
3 NATURE'S AVENGER	87.0 a	86.7 ab	86.7 ab	79.3 a	88.3 ab	100.0 a	81.7 a	74 0 h
	01.0 4	UU., ab	00.7 ab	13.5 a	00.5 ab	100.0 a	01.7 a	74.0 b
					·			
4 NATURE'S AVENGER	76.7 a	78.3 b	78.3 b	55.0 b	73.3 bc	93.3 ab	84.3 a	66.7 b
		i			:			
5 NATURE'S AVENGER	71.7 a	50.0 с	50.0 c	51.7 b	67.7 c	82.7 b	88.3 a	71.7 b
					3 3	Ja., D	00.0 6	ן עירויי
LSD (P=.05)	16.89	10.10	10.10	11.05	15.03	12.38	11.71	12.15
·								

NATURE'S AVENGER ORGANIC - CONCENTRATE EFFICACY EVALUATIONS

Trial ID: NATURE'S CONCENTRATE

Error

333.066667

41.633333

Location: ESCALON, CA

Protocol ID:

Study Director: OLAV MESSERSCHMIDT

Investigator: Brooks Bauer

L				estigat	or: Bro	oks Bauer
AOV For W	/ Wee	d MALNE Cheeseplar	nt N.A. N.A. N.A. F	PLADEA F	7 10-29-20	006 % CONTROL PERCENT N.A. B. BAUER 2 1 DA-A
SOURCE		SUM OF SQUARES	MEAN SQUARE	F	Prob(F)	
Total	14	15848.933333				
Replicate	2	80.133333	40.066667	0.498	0.6255	
Treatment	4	15124.933333	3781.233333	46.982	0.0001	•
Error	8	643.866667	80.483333			
AOV For W	/ Wee	d AMARE Pigweed, F	edroot N.A. N.A.	V.A. PLAI	DEA P 10	-29-2006 % CONTROL PERCENT N.A. B. BAUER 2 1 DA-A
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)	
Total	14	18396.400000			,	
Replicate	2	109.200000	54.600000	1.898	0.2115	•
Treatment	4	18057.066667	4514.266667	156.927	0.0001	
Error	8	230.133333	28.766667			
AOV For W	/ Wee	d AMAGR Pigweed, to	umbling N.A. N.A.	N.A. PLA	DEA P 10	1-29-2006 % CONTROL PERCENT N.A. B. BAUER 2 1 DA-A
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)	
Total	14	18396.400000		•	(1)	
Replicate	2	109.200000	54.600000	1.898	0.2115	
Treatment	4	18057,066667	4514.266667	156.927		
Error	8	230.133333	28.766667			
AOV For W	/ Wee	d POROL Purslane, c	ommon N.A. N.A.	N.A. PLA	DEA P 10	0-29-2006 % CONTROL PERCENT N.A. B. BAUER 2 1 DA-A
SOURCE	DF	SUM OF SQUARES	MEAN SOLIARE	F	Prob(F)	
Total	14	14495.733333		•	1 100(1)	
Replicate	2	330.533333	165.266667	4.800	0.0427	
Treatment	4	13889.733333	3472.433333			
Error	8	275.466667	34.433333	100.0-0	0.0001	
AOV For W	/ Wee	d POAAN Annual blue	egrass N.A. N.A. N	I.A. PLAC	EA P 10-	29-2006 % CONTROL PERCENT N.A. B. BAUER 2 1 DA-A
SOURCE						
Total	DF 14	SUM OF SQUARES 17224.400000	WEAN SQUARE	۲	Prob(F)	
Replicate	2	53.200000	26,600000	0.410	0.6704	
Treatment	4	16661.733333	4165.433333	0.418		
Error	8	509.466667	63.683333	05.409	0.0001	
				-		
AOV For W	/ Wee	d CAPBP Shepherd's	purse N.A. N.A. N	I.A. PLAC	EA P 10-	29-2006 % CONTROL PERCENT N.A. B. BAUER 2 1 DA-A
SOURCE		SUM OF SQUARES	MEAN SQUARE	F	Prob(F)	
Total	14	22328.400000	00 0000		A 4	
Replicate	2	173.200000	86.600000	2.002		
Treatment	4	21809.066667	5452.266667	126.015	0.0001	
Error	8	346.133333	43.266667			
AOV For W	Wee	d SONOL Annual sow	thistle N.A. N.A. N	I.A. PLAC	EA P 10-	29-2006 % CONTROL PERCENT N.A. B. BAUER 2 1 DA-A
SOURCE		SUM OF SQUARES	MEAN SQUARE	F	Prob(F)	
Total	14	18399.733333			. ,	
Replicate	2	176.533333	88.266667	2.282	0.1644	
Treatment	4	17913.733333	4478.433333	115.772	0.0001	
Error	8	309.466667	38.683333			
AOV For W	Wee	d CHEAL Lambsquart	ers, commo N.A.	N.A. N.A.	PLADEA	P 10-29-2006 % CONTROL PERCENT N.A. B. BAUER 2 1 DA-A
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)	
Total	14	15821.333333		•	(1)	
Replicate	2	48.933333	24.466667	0.588	0.5779	
Treatment	. 4	15439.333333	3859.833333			
Frror	8	333.066667	41 633333	JZ.7 10	0.0001	

		3 Agiio		11636a1	<u> </u>	O I I O G I LI	ייש	
Pest Type	W Weed	W Weed	W Weed	W Weed	W Weed	W Weed	W Weed	W Weed
Pest Code	LACSE	MALNE	· AMARE	AMAGR	POROL	POAAN	CAPBP	SONOL
Pest Name	Lettuce, pr>	Cheeseplant	Pigweed, Re>	Pigweed, tu>	Purslane, c>	Annual blue>		Annual sowt>
Crop Code	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
BBCH Scale					19.71,	14.5%	18.7.	(N.A.
Crop Name	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
Crop Variety	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	
Description			1107 (14.7 (,	14.7.	14.7.	IN.A.	N.A.
Part Rated	PLADEA P	PLADEA P	PLADEA P	PLADEA P	PLADEA P	PLADEA P	PLADEA P	DIADEAD
Rating Date	10-29-2006	11-3-2006	11-3-2006	11-3-2006	11-3-2006			PLADEA P
Rating Data Type				% CONTROL	% CONTROL	% CONTROL	11-3-2006	11-3-2006
Rating Unit	PERCENT	PERCENT	PERCENT	PERCENT	PERCENT			
Sample Size	LINGEN	LENOLINE	FLINOLINI	PERCENT	PERCENT	PERCENT	PERCENT	PERCENT
Sample Size Unit								
Collection Basis								
Collection Basis Unit	1							
Number of Subsamples								
Crop Stage	N.A.	N.A.				l		
Crop Stage Scale	IN.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
Crop Density, Unit						ļ		
Pest Stage								
Pest Density, Unit			:					
Footnote Number			1					
Assessed By	B. BAUER	B. BAUER	B. BAUER	B. BAUER	B. BAUER	B. BAUER	B. BAUER	B. BAUER
SE Name								i
SE Description				-				
Rating Timing								
Days After First/Last Applic.	2	7	7	7	7	7	7	7
Trt-Eval Interval	1 DA-A	1 DA-A	1 DA-A	1 DA-A	1 DA-A	1 DA-A	1 DA-A	1 DA-A
Plant-Eval Interval								
ARM Action Codes								
Sort Order for View								
Number of Decimals								
Trt Treatment								
No. Name								
ļ							<u> </u>	
1 UNTREATED CONTROL	0.0 b	0.0 d	0.0 e	0.0 e	0.0 d	0.0 d	0.0 d	0.0 d
2 NATURE'S AVENGER	73.3 a	53.3 a	90.0 a	90.0 a	81.0 a	87.7 a	90.0 a	70.0
ı	70.0 0	30.0 a	90.0 a	90.0 a	61.U a	o/./ a	90.0 a	73.3 a
O NATUREIO ALENGE						<u></u>		
3 NATURE'S AVENGER	68.3 a	46.7 b	50.0 b	50.0 b	68.3 b	68.3 b	71.0 b	64.3 b
4 NATURE'S AVENGER	63.3 a	20.0 c	36.7 c	36.7 c	38.3 c	63,3 b	66.7 b	61.0 b
	""	_5.5 0	00.7 0	50., 6	30.3 6	05.5 0	OU.1 D	01.0 0
E MATUREIC AVENUES								
5 NATURE'S AVENGER	68.3 a	20.0 с	20.0 d	20.0 d	30.0 с	43.3 с	40.0 c	30.0 c
L								
LSD (P=.05)	9.49	6.43	4.86	4.00	40.00	40.40	40.00	
100)	3.49	0.43	4.80	4.86	10.29	12.49	10.36	4.36

NATURE'S AVENGER ORGANIC - CONCENTRATE EFFICACY EVALUATIONS

Trial ID: NATURE'S CONCENTRATE

Location: ESCALON, CA

Protocol ID:

Study Director: OLAV MESSERSCHMIDT Investigator: Brooks Bauer

OURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)	
Total .	14	11573.333333			,	
Replicate	2	13.333333	6.666667	0.262	0.7757	
reatment	4	11356.666667	2839.166667	111.705	0.0001	
rror	8	203.333333	25.416667			

						The second secon
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)	
Total	14	5840.000000			• • •	
Replicate	2	40.000000	20.000000	1.714	0.2401	
Treatment	4	5706.666667	1426.666667	122.286	0.0001	
Error	8	93.333333	11.666667			

SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)	
Total	14	13893.333333			. ,	
Replicate	2	13.333333	6.666667	1.000	0.4096	
Treatment	4	13826.666667	3456.666667	518.500	0.0001	•
Error	8	53.333333	6.666667			

					1-0-2000 % CONTROL PERCENT N.A. B. BAUER / 1 DA-A
DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)	
14	13893.333333			` '	
2	13.333333	6.666667	1.000	0.4096	
4	13826.666667	3456.666667	518.500	0.0001	
8	53.333333	6.666667			
	DF	DF SUM OF SQUARES 14 13893.333333 2 13.333333 4 13826.666667	DF SUM OF SQUARES MEAN SQUARE 14 13893.333333 2 13.333333 6.666667 4 13826.666667 3456.666667	DF SUM OF SQUARES MEAN SQUARE F 14 13893.333333 2 13.333333 6.666667 1.000 4 13826.666667 3456.666667 518.500	DF SUM OF SQUARES MEAN SQUARE F Prob(F) 14 13893.333333 2 13.3333333 6.666667 1.000 0.4096 4 13826.666667 3456.666667 518.500 0.0001

AOV For W	/ Wee	ed POROL Purslane, o	common N.A. N.A.	N.A. PLA	ADEA P 11-3-2006 % CONTROL PERCENT N.A. B. BAUER 7 1 DA-A	
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	F Prob(F)	
Total	14	12661.733333			• •	
Replicate	2	50.533333	25.266667	0.846	6 0.4640	
Treatment	4	12372.400000	3093,100000	103.621	1 0.0001	
Error	8	238.800000	29.850000			

Err or	8	352.133333	44.016667					
Freatment	4	13335.066667	3333.766667	75.739	0.0001			
Replicate	2	90.533333	45.266667	1.028	0.4004			
rotal 💮	14	13777.733333						
	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)			

Error	8	242.133333	30.266667	140.000	0.000		
Treatment	4	14569.066667	3642.266667	120.339	0.0001		
Replicate	2	50.533333	25.266667	0.835	0.4685		
Total	14	14861.733333					
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)		

AOV For V	V Wee	ed SONOL Annual sow	thistle N.A. N.A. N	I.A. PLA	DEA P 11	3-2006 % CONTROL PERCENT N.A. B. BAUER 7 1 DA-A
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)	
Total	14	11114.933333			` •	
Replicate	2	32.533333	16.266667	3.040	0.1042	
Treatment	4	11039.600000	2759.900000	515.869	0.0001	
Error	8	42.800000	5.350000			

	NO DOG	JAGIIC
Pest Type	W Weed	W Weed
Pest Code	CHEAL	LACSE
Pest Name	Lambsquarte>	Lettuce, pr>
Crop Code	N.A.	ŃA.
BBCH Scale		
Crop Name	N.A.	N.A.
Crop Variety	N.A.	N.A.
Description		
Part Rated	PLADEA P	PLADEA P
Rating Date	11-3-2006	
Rating Data Type	% CONTROL	
Rating Unit	PERCENT	PERCENT
Sample Size	1 2(102111	' =:\0=!\
Sample Size Unit	,	
Collection Basis		
Collection Basis Unit	j	
Number of Subsamples		
Crop Stage	N.A.	N.A.
Crop Stage Scale	14.7.	N.A.
Crop Density, Unit		
Pest Stage		
Pest Density, Unit		
Footnote Number	5 544155	
Assessed By	B. BAUER	B. BAUER
SE Name		
SE Description		
Rating Timing		i
Days After First/Last Applic.	7	7
Trt-Eval Interval	1 DA-A	1 DA-A
Plant-Eval Interval		
ARM Action Codes		
Sort Order for View	}	
Number of Decimals		
Trt Treatment		
No. Name		
1 UNTREATED CONTROL	0.0 d	0.0 d
1 ONTREATED CONTROL	0.0 0	0.0 4
O NATIBEIO NATIONE	04.0	94.0
2 NATURE'S AVENGER	81.0 a	81.3 a
	·	
3 NATURE'S AVENGER	65.0 b	61.7 b
4 NATURE'S AVENGER	61.7 b	61.7 b
	-	
5 NATURE'S AVENGER	33.3 с	33.3 c
The state of the	00.0 0	00.0 0
LSD (P=.05)	5.73	7.41

NATURE'S AVENGER ORGANIC - CONCENTRATE EFFICACY EVALUATIONS

Trial ID: NATURE'S CONCENTRATE

Location: ESCALON, CA

Protocol ID:

Study Director: OLAV MESSERSCHMIDT Investigator: Brooks Bauer

AOV For W Weed CHEAL Lambsquarters, commo N.A. N.A. N.A. PLADEA P 11-3-2006 % CONTROL PERCENT N.A. B. BAUER 7 1 DA-A

	SOURCE		SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
	Total	14	12390.400000			
	Replicate	2	65.200000	32.600000	3.518	0.0801
	Treatment	4	12251.066667	3062.766667	330.514	0.0001
1	Error	8	74.133333	9.266667		

AOV For W Weed LACSE Lettuce, prickly N.A. N.A. N.A. PLADEA P 11-3-2006 % CONTROL PERCENT N.A. B. BAUER 7 1 DA-A

SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
Total	14	12219.600000			. ,
Replicate	2	86.800000	43.400000	2.803	0.1195
Treatment	4	12008.933333	3002.233333	193.901	0.0001
Error	8	123.866667	15.483333		

NATURE'S AVENGER ORGANIC - CONCENTRATE EFFICACY EVALUATIONS

Trial ID: NATURE'S CONCENTRATE

Location: ESCALON, CA

Study Director: OLAV MESSERSCHMIDT Investigator: Brooks Bauer

No plot data footnotes entered in study

NATURE'S AVENGER ORGANIC - CONCENTRATE EFFICACY EVALUATIONS

Trial ID: NATURE'S CONCENTRATE Location: ESCALON, CA

Protocol ID:

Study Director: OLAV MESSERSCHMIDT Investigator: Brooks Bauer

Pest Type Pest Code	W Weed MALNE	W Weed AMARE	W Weed AMAGR	W Weed POROL	W Weed POAAN	W Weed CAPBP	W Weed	
Pest Name		Pigweed, Re>	Pigweed, tu>	Pursiane, c>	Annual blue>		SONOL Annual sowt>	CHEAL Lambsquarte>
Crop Code	N.A.	N.A.						
BBCH Scale			,,,,		115 0	14.5 (.	14.5.	14.7.
Crop Name	N.A.	N.A.						
Crop Variety	N.A.	N.A.						
Description								
Part Rated	PLADEA P	PLADEA P						
Rating Date	10-29-2006	10-29-2006	10-29-2006	10-29-2006	10-29-2006	10-29-2006	10-29-2006	10-29-2006
Rating Data Type	% CONTROL	% CONTROL			% CONTROL			% CONTROL
Rating Unit Sample Size	PERCENT	PERCENT						
Sample Size Unit								
Collection Basis			•					
Collection Basis Unit								
Number of Subsamples								
Crop Stage	N.A.	N.A.						
Crop Stage Scale							11.3%	14.7.
Crop Density, Unit								[
Pest Stage								
Pest Density, Unit								
Footnote Number								
Assessed By	B. BAUER	B. BAUER						
SE Name SE Description]
Rating Timing								1
Days After First/Last Applic.	2	2	2	2	,	١ .		
Trt-Eval Interval	1 DA-A	1 DA-A	1 DA-A	2 1 DA-A	2 1 DA-A	2 1 DA-A	1 DA-A	4 5 4 4
Plant-Eval Interval	I DA-A	1 0/-/	I DA-A	1 DA-A				
ARM Action Codes					ļ			1
Sort Order for View								1
Number of Decimals								
Trt Treatment		··-			-			
No. Name			:					
1 UNTREATED CONTROL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	- 00
1 SITTLE CONTROL	0.0	0.0	0.0	0.0		0.0		
	0.0	0.0	0.0	0.0		0.0		
			0.0	0.0		0.5	0.0	0.0
Mean =	0.0	0.0	0.0	0.0		0.0	0.0	0.0
2 NATURE'S AVENGER	90.0	90.0	90.0	80.0		100.0		
	75.0	98.0	98.0	90.0		100.0	90.0	
	70.0	100.0	100.0	90.0	100.0	100.0	90.0	100.0
Mean =	78.3	96.0	96.0	86.7	91.7	100.0	90.0	94.3
3 NATURE'S AVENGER	95.0	80.0	80.0	70.0	80.0	100.0	85.0	
	91.0	80.0	80.0	73.0		100.0		
	75.0	100.0	100.0	95.0				
Mean =	87.0	86.7	86.7	79.3	ļ		·	
4 NATURE'S AVENGER	70.0	80.0	80.0	50.0				
	70.0	75.0	75.0	50.0		90.0		
ļ	90.0	80.0	80.0	65.0	65.0	90.0	83.0	65.0
Mean =	76.7	78.3	78.3	55.0	73.3	93.3	84.3	66.7
5 NATURE'S AVENGER	75.0	50.0	50.0	50.0	70.0	100.0	100.0	75.0
	70.0	50.0	50.0					
<u> </u>	70.0	50.0	50.0	55.0				
	=			_				
Mean =	71.7	50.0	50.0	51.7	67.7	82.7	88.3	71.7

2-22-2007 (NATURE'S CONCENTRATE - REVISED) Two Bees Agricultural Research & Consulting

		3 Mgilo			CII G C			
Pest Type	W Weed	W Weed	W Weed	W Weed	W Weed	W Weed	W Weed	W Weed
Pest Code	LACSE	MALNE	AMARE	AMAGR	POROL	POAAN	CAPBP	SONOL
Pest Name	Lettuce, pr>		Pigweed, Re>	Pigweed, tu>	Purslane, c>	Annual blue>	Shepherd's >	Annual sowt>
Crop Code	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
BBCH Scale						'		
Crop Name	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
Crop Variety	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
Description	DI 45554 5							
Part Rated	PLADEA P	PLADEA P	PLADEA P	PLADEA P	PLADEA P	PLADEA P	PLADEA P	PLADEA P
Rating Date	10-29-2006	11-3-2006	11-3-2006	11-3-2006	11-3-2006	11-3-2006	11-3-2006	11-3-2006
Rating Data Type	% CONTROL				% CONTROL			% CONTROL
Rating Unit	PERCENT	PERCENT	PERCENT	PERCENT	PERCENT	PERCENT	PERCENT	PERCENT
Sample Size Sample Size Unit								
Collection Basis								
Collection Basis Unit								
Number of Subsamples								
Crop Stage	N.A.	N.A.	N.A.	N.A.	NI A	A1 A		
Crop Stage Scale	IN.A.	N.A.	IN.A.	IN.A.	N.A.	N.A.	N.A.	N.A.
Crop Density, Unit								· [
Pest Stage								
Pest Density, Unit								
Footnote Number								
Assessed By	B. BAUER	B. BAUER	B. BAUER	B. BAUER	B. BAUER	B. BAUER	B. BAUER	B BALIES
SE Name	3. 5/10E/1	D. D. OLIV	D. DAOLIK	D. DAULIN	D. DAGLIN	B. BAULK	D. DAUER	B. BAUER
SE Description								
Rating Timing								
Days After First/Last Applic.	2	7	7	7	7	7	7	7
Trt-Eval Interval	1 DA-A	1 DA-A	1 DA-A	1 DA-A	1 DA-A	1 DA-A	1 DA-A	1 DA-A
Plant-Eval Interval		,		. 5	1 57171	15/1/1	IDAA	ויאטו
ARM Action Codes								
Sort Order for View								
Number of Decimals								
Trt Treatment								
No. Name								
1 UNTREATED CONTROL		0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0	0.0	0.0		0.0
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Mean =	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2 NATURE'S AVENGER	80.0	60.0	90.0	90.0	80.0	90.0	90.0	70.0
	70.0	50.0	90.0	90.0	83.0	93.0	90.0	75.0 75.0
	70.0	50.0	90.0	90.0	80.0	80.0	90.0	75.0 75.0
	'3.0			55.0	55.0	55.0	30.0	1 3.0
Mean =	73.3	53.3	90.0	90.0	81.0	87.7	90.0	73.3
3 NATURE'S AVENGER	60.0	50.0	50.0	50.0	75.0	70.0	70.0	60.0
	75.0	40.0	50.0	50.0	70.0	70.0	68.0	63.0
	70.0	50.0	50.0	50.0	60.0	65.0	75.0	70.0
Mean =	68.3	46.7	50.0	50.0	68.3	68.3	71.0	64.3
4 NATURE'S AVENGER								
# NATURE S AVENGER	60.0	20.0	40.0	40.0	40.0	70.0	70.0	60.0
	65.0 65.0	20.0	30.0	30.0		50.0	60.0	60.0
	05.0	20.0	40.0	40.0	45.0	70.0	70.0	63.0
Mean =	63.3	20.0	36.7	36.7	38.3	63.3	66.7	61.0
5 NATURE'S AVENGER	70.0	20.0	20.0	20.0	35.0	50.0	50.0	30.0
	70.0	20.0	20.0	20.0	25.0 25.0	40.0	40.0	30.0
	65.0	20.0	20.0	20.0	30.0	40.0	30.0	30.0
	33.0	20.0	20.0	20.0	55.0		30.0	30.0
Mean =	68.3	20.0	20.0	20.0	30.0	43.3	40.0	30.0
	L		20.0		00.0		-10.0	30.0

2-22-2007 (NATURE'S CONCENTRATE - REVISED) Two Bees Agricultural Research & Consulting

Pest Type	W Weed	
Pest Code Pest Name	CHEAL	
Crop Code	Lambsquarte>	
BBCH Scale	14.4.	N.A.
Crop Name	N.A.	N.A.
Crop Variety	N.A.	
Description	i	ļ
Part Rated	PLADEA P	
Rating Date	11-3-2006	11-3-2006
Rating Data Type Rating Unit	% CONTROL PERCENT	
Sample Size	PERCENT	PERCENT
Sample Size Unit		
Collection Basis		
Collection Basis Unit		
Number of Subsamples		
Crop Stage Crop Stage Scale	N.A.	N.A.
Crop Density, Unit		
Pest Stage		
Pest Density, Unit		
Footnote Number		
Assessed By	B. BAUER	B. BAUER
SE Name		
SE Description Rating Timing		,
Days After First/Last Applic.	7	7
Trt-Eval Interval	1 DA-A	1 DA-A
Plant-Eval Interval		. 2.,,,
ARM Action Codes		
Sort Order for View Number of Decimals		;
Trt Treatment No. Name		
		
1 UNTREATED CONTROL	0.0	0.0
1	0.0 0.0	0.0 0.0
	0.0	0.0
Mean =	0.0	0.0
2 NATURE'S AVENGER	80.0	80.0
	83.0	84.0
	80.0	80.0
Mean =	81.0	81.3
3 NATURE'S AVENGER	60.0	60.0
	65.0	55.0
	70.0	70.0
Mean =	65.0	61.7
4 NATURE'S AVENGER		
A NATURE S AVENGER	60.0 60.0	60.0
	65.0	60.0 65.0
Mean =	61.7	61.7
5 NATURE'S AVENGER	30.0	30.0
	30.0	30.0
	40.0	40.0
Mean =	33.3	33.3
Wiedi) –	30.3	33.3

	·	,	
			-
`			

Common chickweed (Stellaria media)

Nature's Avenger Organic Herbicide RTU (EPA Reg. No. 82052-1)

Consultant/Applicator:

Name

Brooks Bauer

Affiliation

Two Bees Agricultural Research and Consulting

Address

20592 Ayers Avenue Escalon, CA 95320

~	ort: Two Bees Ag. Research ort Date:	Percent Control Application Date: October 27, 2006							
	Treatments	Application Rate (% AI)	2 DAT		4 DAT		7 DAT		
1	Untreated		0.0	С	0.0	c	0.0	c	
2	Nature's Avenger RTU	17.5 %	100.0	a	100.0	а	100.0	a	
3	Roundup RTU	2 % glyphosate	18.3	b	18.3	b	35.0	b	
LSD (P = .05)		13.62		13	13.62		54		

Annual sowthistle (Sonchus oleraceus)

Nature's Avenger Organic Herbicide RTU (EPA Reg. No. 82052-1)

Consultant/Applicator:

Name

Brooks Bauer

Affiliation

Two Bees Agricultural Research and Consulting

Address

20592 Ayers Avenue Escalon, CA 95320

	ort: Two Bees Ag. Research ort Date:	& Consulting	Percent Control Application Date: October 27, 2006							
	Treatments	Application Rate (% AI)	2 DAT		4 DAT		7 DAT			
1	Untreated		0.0	С	0.0	С	0.0	С		
2	Nature's Avenger RTU	17.5 %	100.0	a	100.0	а	98.7	a		
3	Roundup RTU	2 % glyphosate	3.3	ь	3.3	Ъ	28.3	ь		
	LSD(P = .0)	5)	7.	56	7.	56	9.	53		

Shepherd's purse (Capsella bursa-pastoris)

Nature's Avenger Organic Herbicide RTU (EPA Reg. No. 82052-1)

Consultant/Applicator:

Name

Brooks Bauer

Affiliation

Two Bees Agricultural Research and Consulting

Address

20592 Ayers Avenue Escalon, CA 95320

	ort: Two Bees Ag. Research ort Date:	Percent Control Application Date: October 27, 2006							
i regiments		Application Rate (% AI)	2 DAT		4 DAT		7 DAT		
1	Untreated		0.0	c	0.0	c	0.0	c	
2	Nature's Avenger RTU	17.5 %	96.7	a	96.7	a	97.3	a	
3	Roundup RTU	2 % glyphosate	25.0	b	25.0	b	36.0	b	
	LSD ($P = .0$	5)	15	.11	15	.11	6.	59	

Annual bluegrass (Poa annua)

Nature's Avenger Organic Herbicide RTU (EPA Reg. No. 82052-1)

Consultant/Applicator:

Name

Brooks Bauer

Affiliation

Two Bees Agricultural Research and Consulting

Address

20592 Ayers Avenue

Escalon, CA 95320

_	ort: Two Bees Ag. Research ort Date:	Percent Control Application Date: October 27, 2006							
	Treatments	Application Rate (% AI)	2 DAT		4 DAT		7 DAT		
1	Untreated		0.0	С	0.0	С	0.0	c	
2	Nature's Avenger RTU	17.5 %	90.0	a	90.0	a	100.0	a	
3	Roundup RTU	2 % glyphosate	45.0	Ъ	45.0	ь	90.0	ь	
	LSD (P = .05)		13.88		13.88		6.54		

Prickly lettuce (Lactuca serriola)

Nature's Avenger Organic Herbicide RTU (EPA Reg. No. 82052-1)

Consultant/Applicator:

Name

Brooks Bauer

Affiliation

Two Bees Agricultural Research and Consulting

Address

20592 Ayers Avenue

Escalon, CA 95320

	ort: Two Bees Ag. Research ort Date:	& Consulting	Percent Control Application Date: October 27, 2006					
	Treatments	Application Rate (% AI)	2 DAT	4 DAT	7 DAT			
1	Untreated		0.0	0.0	0.0			
2	Nature's Avenger RTU	17.5 %	100.0	100.0	100.0			
3	Roundup RTU	2 % glyphosate	0.0	0.0	0.0			
	LSD $(P = .0)$	5)	N.S.	N.S.	N.S.			

Common purslane (Portulaca oleracea)

Nature's Avenger Organic Herbicide RTU (EPA Reg. No. 82052-1)

Consultant/Applicator:

Name

Brooks Bauer

Affiliation

Two Bees Agricultural Research and Consulting

Address

20592 Ayers Avenue

Escalon, CA 95320

_	ort: Two Bees Ag. Research ort Date:	Percent Control Application Date: October 27, 2006							
	Treatments	Application Rate (% AI)	2 DAT		4 DAT		7 DAT		
1	Untreated		0.0	С	0.0	С	0.0	С	
2	Nature's Avenger RTU	17.5 %	100.0	a	100.0	a	91.0	a	
3	Roundup RTU	2% glyphosate	11.7	ь	11.7	b	11.7	b	
	LSD(P = .0.	5)	3.	78	3.	78	6.	39	

Pigweed (Amaranthus retroflexus)

Nature's Avenger Organic Herbicide RTU (EPA Reg. No. 82052-1)

Consultant/Applicator:

Name

Brooks Bauer

Affiliation

Two Bees Agricultural Research and Consulting

Address

20592 Ayers Avenue

Escalon, CA 95320

_	ort: Two Bees Ag. Research ort Date:	Percent Control Application Date: October 27, 2006						
	Treatments	Application Rate (% AI)	2 DAT		4 DAT		7 DAT	
1	Untreated		0.0	С	0.0	c	0.0	С
2	Nature's Avenger RTU	17.5 %	100.0	a	100.0	а	90.3	а
3	Roundup RTU	2 % glyphosate	20.0	b	20.0	ь	43.3	b
	LSD (P = .05)			.33	11.33		8.41	

Mallow (Malva neglecta)

Nature's Avenger Organic Herbicide RTU (EPA Reg. No. 82052-1)

Consultant/Applicator:

Name

Brooks Bauer

Affiliation

Two Bees Agricultural Research and Consulting

Address

20592 Avers Avenue

Escalon, CA 95320

Report: Two Bees Ag. Research & Consulting Report Date:			Percent Control Application Date: October 27, 2006						
Treatments Application Rate (% AI)			2 DAT		4 DAT		7 DAT		
1	Untreated		0.0	b	0.0	b	0.0	c	
2	Nature's Avenger RTU	17.5 %	86.7	a	86.7	a	57.7	а	
3	Roundup RTU	2 % glyphosate	5.0	b	5.0	b	43.3	b	
	LSD (P = .05)		12	.81	12	.81	10	.79	

Means followed by same letter do not significantly differ (P=.05, Duncan's New MRT)

Overall conclusions from the trial with Nature's Avenger Organic (NAO) herbicide RTU:

- Almost complete control (90-100 %) was achieved by using NAO RTU on Amaranthus retrolexus, Portulaca oleracea, Poa annua, Capsella bursa-pastoris, Sonchus oleraceus, and Lactuca serriola.
- Effect on mallow was not as good; after 7 days, more than 50 % of Malva neglecta was controlled by Nature's Avenger RTU
- During the 7days after treatment, NAO performed significantly faster and more effectively than Roundup.

NATURE'S AVENGER ORGANIC RTU - EFFICACY EVALUATIONS

Trial ID: NATURE'S RTU Location: ESCALON, CA

Protocol ID:

Study Director: OLAV MESSERSCHMIDT

Investigator: Brooks Bauer

General Trial Information

Study Director: OLAV MESSERSCHMIDT

Title: OWNER

Affiliation: Postal Code:

OMC AG CONSULTING 48823

E-mail: OMESSERSCHMIDT@COMCAST.NET

Investigator:

Brooks Bauer

Title: FIELD SCIENTIST

Affiliation: Postal Code:

TWO BEES AGRICULTURAL RESEARCH AND CONSULTING

E-mail: BBAUER@TWOBEESAG.COM

Keywords:

Escalon City:

Trial Location Trial Status:

ONE-YEAR/FINAL

State/Prov.: CA Postal Code: 95320

Trial Reliability: Initiation Date:

HIGH 10-27-2006

Mariot

Country: USA -Latitude of LL Corner °: Planned Completion Date: 11-15-2006

Altitude of LL Corner:

-Longitude of LL Corner

Map Reference: Directions:

Unit:

Angle y-axis to North °:

Conducted Under GLP: Conducted Under GEP: Official Trial Code: Other Trial Code:

Guideline Description

Objectives:

DETERMINE THE EFFICACY OF NATURE'S AVENGER ORGANIC HERBICIDE RTU ON REPRESENTATIVE HOMEOWNER WEEDS.

This trial was conducted at the Two Bees Research Farm near Escalon, CA, targeting the weeds listed in this report. The application and evaluations were performed following the protocol provided.

Application Note: Very slight foaming occurred when spray bottle was shaken. The degree of foaming was well within limits of commercial acceptability.

Nature's Avenger RTU provided excellent and rapid control of both broadleaf and grassy weeds. Control was very good 1 DAT and increased to excellent at 2 DAT except for Malva. Malva control diminished at 7 DAT to 57% due to re-greening.

Roundup did not perform satisfactorily during the time period of this trial, but control with Roundup would be expected to increase over time when temperature are cool.

Cooperator/Landowner

Cooperator:

BROOKS BAUER

Country: USA

Organization: TWO BEES AGRICULTURAL RESEARCH Address 1:

20592 AYERS AVENUE

Phone No: 209-838-0606 209-838-3639

Address 2:

ESCALON city:

State/Prov: CA

Postal Code: 95320

E-mail: BBAUER@TWOBEESAG.COM

Crop Description

Crop 1: N.A. Variety: N.A. BBCH Scale:

Description: N.A. Planting Date: Rate, Unit: Perennial Age, Unit: Spacing Within Row, Unit:

Row Spacing, Unit: Seed Bed: Soil Moisture:

Planting Method:

Depth, Unit:

Harvest Date:

Soil Temperature, Unit: Emergence Date: Harvest Equipment:

Harvested Width, Unit: % Standard Moisture: Weighing Equipment:

Harvested Length, Unit: Moisture Meter:

N.A.

Pest Description
Pest 1 Type: W Code: MALNE Malva neglecta
Common Name: Cheeseplant
Description:

Pest 2 Type: W Code: STEME Stellaria media

Common Name: Common chickweed

Description:

Pest 3 Type: W Code: POROL Portulaca oleracea

Common Name: Purslane, common

Description:

Pest 4 Type: W Code: LACSE Lactuca serriola

Common Name: Lettuce, prickly

Description:

Pest 5 Type: W Code: AMARE Amaranthus retroflexus

Common Name: PIGWEED

Description:

Pest 6 Type: W Code: POAAN Poa annua Common Name: Annual bluegrass

Description:

Pest 7 Type: W Code: CAPBP Capsella bursa-pastoris

FТ

FT

Common Name: Shepherd's purse

Description:

Site and Design

Plot Width, Unit: 5 Plot Length, Unit: 15 Site Type: FIELD

Replications:

Tillage Type: NO TILL Study Design: Randomized Complete Block

Replications: % Slope:

Soil Drainage:

Trial Initiation Comments:

	Previous	Crops	Previous	Pesticides	Year
ĺ.					

Maintenance

No.	Date	Maintena Treatment			Rate Unit	
1.						

Comment:

Field Prep./Maintenance:

Soil Description

Description Name:

% Sand: % OM: % Silt: pH:

Texture:

% Silt: % Clay:

CEC:

Soil Name: Fert. Level:

Analyzed By:

Additional Measured Elements

Element Quantity Unit

Moisture Conditions

Overall Moisture Conditions: Closest Weather Station:

Distance:

Unit:

Date Time Amount Unit Type Interval Unit
1.

Application Description

	"PPIICECE
	A
Application Date:	10-27-2006
Time of Day:	1:15 PM
Application Method:	SPRAY
Application Timing:	FOLIARGTH
Application Placement:	FOLIAR
Applied By:	B. BAUER
Air Temperature, Unit:	73 F
% Relative Humidity:	25
Wind Velocity, Unit:	3 мрн
Wind Direction:	W
Dew Presence (Y/N):	N
Water Hardness:	N.A.
Soil Temperature, Unit:	
Soil Moisture:	
% Cloud Cover:	0
Next Rain Occurred On:	!

Crop Stage At Each Application

	A
Crop 1 Code, BBCH Scale:	
Stage Scale Used:	
Stage Majority, Percent:	
Stage Minimum, Percent:	
Stage Maximum, Percent:	
Diameter, Unit:	••
Height, Unit:	
Height Minimum, Maximum:	

Pest Stage At Each Application

	I	4
Pest 1 Code, Disc., Scale:	MALNE	W DESC
Stage Majority, Percent:	6 INCH	100
Stage Minimum, Percent:		
Stage Maximum, Percent:		
Diameter, Unit:	ļ	
Height, Unit:	•	
Height Minimum, Maximum:		
Density, Unit:		
Coverage, Unit:	İ	
Pest 2 Code, Disc., Scale:	STEME	W DESC
Stage Majority, Percent:	6 INCH	100
Stage Minimum, Percent:		
Stage Maximum, Percent:		
Diameter, Unit:	:	
Height, Unit:		
Height Minimum, Maximum:		
Density, Unit:		
Coverage, Unit:		
Pest 3 Code, Disc., Scale:	POROL	W DESC
Stage Majority, Percent:	3 INCH	100
Stage Minimum, Percent:		
Stage Maximum, Percent:		
Diameter, Unit:		
Height, Unit:		

	_		J	~,8
Height Minimum, Maximum:	ļ			
Density, Unit:	!			
Coverage, Unit:				
Pest 4 Code, Disc., Scale:	L	CSE	W	DESC
Stage Majority, Percent:	6	INCH	10	0
Stage Minimum, Percent:	!			
Stage Maximum, Percent:				
Diameter, Unit:				
Height, Unit:	ĺ			
Height Minimum, Maximum:	1			
Density, Unit:				
Coverage, Unit:				
Pest 5 Code, Disc., Scale:	ΑM	IARE	W	DESC
Stage Majority, Percent:	6	INCH	10	0
Stage Minimum, Percent:				
Stage Maximum, Percent:				
Diameter, Unit:				
Height, Unit:				
Height Minimum, Maximum:				
Density, Unit:				
Coverage, Unit:				
Pest 6 Code, Disc., Scale:	PC	DAAN	W	DESC
Stage Majority, Percent:	3	INCH	10	0
Stage Minimum, Percent:				
Stage Maximum, Percent:				
Diameter, Unit:				
Height, Unit:				
Height Minimum, Maximum:				
Density, Unit:				
Coverage, Unit:				
Pest 7 Code, Disc., Scale:	CP	PBP	W	
Stage Majority, Percent:				
Stage Minimum, Percent:				
Stage Maximum, Percent:				
Diameter, Unit:				
Height, Unit:				
Height Minimum, Maximum:				
Density, Unit:				
Coverage, Unit:				

Application Equipment

	Tippircucton Eq
	A
Appl. Equipment:	CO2 SPRAYER
Operating Pressure, Unit:	50 PSI
Nozzle Type:	;FLAT FAN
Nozzle Size:	8012
Nozzle Spacing, Unit:	22 IN
Nozzles/Row:	2
Nozzle Calibration, Unit:	
Band Width, Unit:	N.A.
Boom ID;	
Boom Length, Unit:	4 FT
Boom Height, Unit:	14 IN
Ground Speed, Unit:	1 мрн
Incorporation Equip.:	N.A.
Hours to Incorp.:	
Incorp. Depth, Unit:	
Carrier:	WATER
Spray Volume, Unit:	150 GAL/AC
Mix Size, Unit:	
Spray pH:	6.8
Propellant:	C02
Tank Mix (Y/N):	N

Equipment Comment:

Trt No Treatment Application Comment

Date

Ву

Notes

Date

Ву

Deviations

Reasons:

NATURE'S AVENGER ORGANIC RTU - EFFICACY EVALUATIONS

Trial ID: NATURE'S RTU Location: ESCALON, CA

Protocol ID: Study Director: OLAV MESSERSCHMIDT Investigator: Brooks Bauer

						
		W Weed	W Weed			
			Purslane, c>	Lettuce, pr>	Annual blue>	Shepherd's >
N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
						ĺ
	1	N.A.	N.A.	N.A.	N.A.	N.A.
N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
1	i					
PLADEA P	PLADEA P	PLADEA P	PLADEA P	PLADEA P	PLADEA P	PLADEA P
10-29-2006	10-29-2006	10-29-2006	10-29-2006	10-29-2006		10-29-2006
% CONTROL	% CONTROL	% CONTROL				% CONTROL
PERCENT						PERCENT
			,,,,_,,,,		1 2/102/1	
1						
}						
NΔ	NΔ	NΙΔ	NI A	NI A	NI A	N.A.
14.76	II.A.	IV.A.	14.74.	1N.A.	N.A.	N.A.
DEALIED	D DALIED	D DAUED	D 041/CD	B B41155		
D. DAUER	B. BAUER	B. BAUER	B. BAUER	B. BAUER	B. BAUER	B. BAUER
	j					
١ ,			_	_	_	_
	4 5 4 6	4 72 4		2	2	2
1 DA-A	1 DA-A	1 DA-A	1 DA-A	1 DA-A	1 DA-A	1 DA-A
00 6	00.	0.0 -				
0.0 8	0.0 6	U.U C	υ.υ ε	0.0 6	0.0 c	0.0 c
86.7 a	100.0.0	100.0.0	100.0.0	100.0.0	00.0 -	06.7
00.7 a	100.0 a	100.0 a	100.0 a	100.0 a	90.0 a	96.7 a
5.0 b	20.0 b	20.0 b	11.7 b	0.0 b	45.0 b	25.0 b
				,	<u> </u>	
12.81	11.33	11.33	3.78	0.00	13.88	15.11
	MALNE Cheeseplant N.A. N.A. N.A. PLADEA P 10-29-2006 CONTROL PERCENT N.A. B. BAUER 2 1 DA-A 0.0 b 86.7 a 5.0 b	MALNE Cheeseplant N.A. N.A. N.A. PLADEA P 10-29-2006 CONTROL PERCENT N.A. N.A. N.A. PLADEA P 10-29-2006 CONTROL PERCENT N.A. N.A. N.A. N.A. N.A. OND OND OND OND OND OND OND OND OND ON	MALNE Cheeseplant N.A. RED ROOT PI> Pigweed, tu> N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A	MALNE Cheeseplant N.A. RED ROOT PI> N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A	MALNE Cheeseplant RED ROOT Plant N.A. N.A.	MALNE Cheeseplant N.A. N.A.

NATURE'S AVENGER ORGANIC RTU - EFFICACY EVALUATIONS

Trial ID: NATURE'S RTU

Location: ESCALON, CA

Protocol ID:

Study Director: OLAV MESSERSCHMIDT Investigator: Brooks Bauer

AOV For W Weed MALNE Cheeseplant N.A. N.A. N.A.	PLADEA P 10-29-2006 % CONTROL PERCENT N.A. B. BAUER 2 1 DA-A
---	--

SOURCE	DF 8	SUM OF SQUARES 14372,222222	MEAN SQUARE	F	Prob(F)
Replicate	2	38.888889	19.444444	0.609	0.5878
Treatment Error	2 4	14205.555556 127.777778	7102.777778 31.944444	222.348	0.0001

AOV For W Weed AMARE RED ROOT PIGWEED N.A. N.A. N.A. PLADEA P 10-29-2006 % CONTROL PERCENT N.A. B. BAUER 2 1 DA-A

SOURCE Total	DF 8	SUM OF SQUARES 16950,000000	MEAN SQUARE	F	Prob(F)
Replicate	2	50.000000	25.000000	1.000	0.4444
Treatment	2	16800.000000	8400.000000	336.000	0.0001
Error	4	100.000000	25.000000		

AOV For W Weed AMAGR Pigweed, tumbling N.A. N.A. N.A. PLADEA P 10-29-2006 % CONTROL PERCENT N.A. B. BAUER 2 1 DA-A

SOURCE Total	DF 8	SUM OF SQUARES 16950,000000	MEAN SQUARE	F	Prob(F)
Replicate	2	50.000000	25.000000	1.000	0.4444
Treatment	2	16800.000000	8400.000000	336.000	0.0001
Error	4	100.000000	25.000000		

AOV For W Weed POROL Purslane, common N.A. N.A. N.A. PLADEA P 10-29-2006 % CONTROL PERCENT N.A. B. BAUER 2 1 DA-A

SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
Total	8	17955.555556			,
Replicate	2	5.55556	2.777778	1.000	0.4444
Treatment	2	17938.888889	8969.444444	3229.000	0.0001
Error	4	11.111111	2.777778		
			·		

AOV For W Weed LACSE Lettuce, prickly N.A. N.A. N.A. PLADEA P 10-29-2006 % CONTROL PERCENT N.A. B. BAUER 2 1 DA-A

SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
Total	8	20000.000000			,
Replicate	2	0.000000	0.000000	0.000	1.0000
Treatment	2	20000.000000	10000.000000	0.000	1.0000
Error	4	0.000000	0.000000		

AOV For W Weed POAAN Annual bluegrass N.A. N.A. N.A. PLADEA P 10-29-2006 % CONTROL PERCENT N.A. B. BAUER 2 1 DA-A

SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
Total	8	12450.000000			,
Replicate	2	150.000000	75.000000	2,000	0.2500
Treatment	2	12150.000000	6075.000000	162.000	0.0001
Error	4	150.000000	37.500000		

AOV For W Weed CAPBP Shepherd's purse N.A. N.A. N.A. PLADEA P 10-29-2006 % CONTROL PERCENT N.A. B. BAUER 2 1 DA-A

SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
Total	8	15322.222222			,
Replicate	2	38.888889	19.44444	0.438	0.6732
Treatment	2	15105.555556	7552.777778	169.938	0.0001
Error	4	177.777778	44.44444		

Pest Code Pest Name Common chic> Crop Code N.A. BBCH Scale Crop Name Crop Variety Description Part Rated Rating Date Rating Data Type Rating Unit Sonne Sonol Annual sowt> Common chic> N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A							9	
Pest Name	Pest Type							W Weed
NA								LACSE
BBCH Scale Crop Name Crop Variety Description Part Rated PLADEA P Rating Date Rating Timing Days After First/Last Applic. 1 DA-A							Purslane, c>	Lettuce, pr>
Crop Name		N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
Crop Variety Description Part Rated PLADEA P 10-29-2006 11-3-2006								
Description Part Rated Pa					N.A.	N.A.	N.A.	N.A.
Part Rated Pladea		N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
Rating Date Rating Data Type Rating Unit Sample Size Sample Size Unit Collection Basis Unit Number of Subsamples Crop Stage Crop Density, Unit Pest Stage Pest Density, Unit Footnote Number Assessed By SE Name SE Description Rating Timing Days After First/Last Applic. Trl-Eval Interval Plant-Eval Interval Plant-Eval Interval ARM Action Codes Sort Order for View Number of Decimals Trl Treatment No. Name 1 UNTREATED CONTROL 11-3-2006 CONTROL PERCENT PERCENT PERCENT PERCENT 11-3-2006 CONTROL PERCENT P								
Rating Date Rating Date Rating Date Rating Date Rating Date Type Rating Date Type Rating Unit Sample Size Sample Size Unit Collection Basis Unit Number of Subsamples Crop Stage Crop Density, Unit Peers Base Base Base Base Base Base Base Bas	Part Rated	PLADEA P		PLADEA P	PLADEA P	PLADEA P	PLADEA P	PLADEA P
Rating Data Type Rating Unit Sample Size Sample Size Unit Collection Basis Collection Basis Unit Number of Subsamples Crop Stage Crop Stage Pest Density, Unit Pest Stage Pest Density, Unit Pootnote Number Assessed By SE Description Rating Timing Days After First/Last Applic. Tit-Eval Interval Plant-Eval Interval Plant-Eval Interval Number of Decimals Tit Treatment No. Name 1 UNTREATED CONTROL PERCENT P	Rating Date	10-29-2006	10-29-2006	11-3-2006	11-3-2006	11-3-2006	11-3-2006	
Rating Unit Sample Size Size Sample Size Size Size Size Size Size Size Size	Rating Data Type	% CONTROL	% CONTROL	% CONTROL	% CONTROL	% CONTROL	% CONTROL	% CONTROL
Sample Size Sample Size Sample Size Unit Collection Basis Unit Number of Subsamples Crop Stage Crop Stage Crop Stage Crop Stage Crop Stage Crop Stage Pest Density, Unit Pest Stage Pest Density, Unit Pest Stage Pest Density Unit Pest Stage Pest Dens	Rating Unit	PERCENT			PERCENT			
Collection Basis Unit Number of Subsamples Crop Stage Crop Density, Unit Pest Stage Pest Density, Unit Footnote Number Assessed By B. BAUER B. BAUE	Sample Size							
Collection Basis Unit Number of Subsamples Crop Stage Crop Stage Crop Stage Crop Stage Crop Stage Pest Stage Pest Density, Unit Footnote Number Assessed By SE Name SE Description Rating Timing Days After First/Last Applic. 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Sample Size Unit							
Number of Subsamples N.A. N.A.<	Collection Basis			ļ				,
Crop Stage N.A.	Collection Basis Unit							
Crop Stage N.A.	Number of Subsamples							
Crop Stage Scale Crop Density, Unit Pest Stage Pest Density, Unit Footnote Number Assessed By SE Name SE Description Rating Timing Days After First/Last Applic. 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		N.A.	N.A.	N.A.	NA	NΑ	NΔ	NΔ
Crop Density, Unit Pest Stage Pest Density, Unit Footnote Number Assessed By SE Name SE Description Rating Timing Days After First/Last Applic. 1 DA-A Plant-Eval Interval ARM Action Codes Sort Order for View Number of Decimals Trt Treatment No. Name 1 UNTREATED CONTROL 0.0 b 0.0 c	Crop Stage Scale			''''	14.7 4,	14.71.	11.71.	14.0.
Pest Stage Pest Density, Unit Footnote Number Assessed By SE Name SE Description Rating Timing Days After First/Last Applic. 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7								
Pest Density, Unit Footnote Number Assessed By SE Name SE Description Rating Timing Days After First/Last Applic. Tri-Eval Interval Plant-Eval Interval ARM Action Codes Sort Order for View Number of Decimals Tri Treatment No. Name 1 UNTREATED CONTROL 0.0 b 0.0 c 0								
Footnote Number Assessed By SE Name SE Description Rating Timing Days After First/Last Applic. 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7								
Assessed By SE Name SE Description Rating Timing Days After First/Last Applic. 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7								
SE Name SE Description Rating Timing Days After First/Last Applic. 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		REALIER	R RAHED	D BALLED	D DALIED	D DALIED	D DALIED	ם האונים
SE Description Rating Timing Days After First/Last Applic. 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		D. DAOLIK	D. D. IOLIK	D. DAULIN	D. DAULIN	D. DAULK	D. DAUEN	D. DAUER
Rating Timing Days After First/Last Applic. 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7							ļ	
Days After First/Last Applic. 2 2 7								
Trt-Eval Interval Plant-Eval Interval ARM Action Codes Sort Order for View Number of Decimals 1 DA-A		,	,	7	7	7		7
Plant-Eval Interval ARM Action Codes Sort Order for View Number of Decimals Trt Treatment No. Name 1 UNTREATED CONTROL 2 NATURE'S AVENGER RTU 100.0 a 1	Tri-Eval Interval		1 70 4	1 700 1		1 1 1 1 1	450 6	4 5 4 4
ARM Action Codes Sort Order for View Number of Decimals Trt Treatment No. Name 1 UNTREATED CONTROL 2 NATURE'S AVENGER RTU 100.0 a 100	1	וטאיא	120-0	I DA-A	I DA-A	I DA-A	I DA-A	I DA-A
Sort Order for View Number of Decimals Trt Treatment No. Name 1 UNTREATED CONTROL 2 NATURE'S AVENGER RTU 100.0 a 10	1		,					
Number of Decimals Interpretation Int								
Trt Treatment No. Name 1 UNTREATED CONTROL 2 NATURE'S AVENGER RTU 100.0 a 100.0								
No. Name 1 UNTREATED CONTROL 0.0 b 0.0 c 0.0								
1 UNTREATED CONTROL 0.0 b 0.0 c 0.0		ľ						
2 NATURE'S AVENGER RTU 100.0 a 100.0 a 57.7 a 90.3 a 90.3 a 91.0 a 92.7 a 3 Roundup 3.3 b 18.3 b 43.3 b 43.3 b 11.7 b 36.7 b	No. Name							
2 NATURE'S AVENGER RTU 100.0 a 100.0 a 57.7 a 90.3 a 90.3 a 91.0 a 92.7 a 3 Roundup 3.3 b 18.3 b 43.3 b 43.3 b 11.7 b 36.7 b	1 UNTREATED CONTROL	0.0 b	0.0 c	000	000	000	0.0.0	0.0.0
3 Roundup 3.3 b 18.3 b 43.3 b 43.3 b 11.7 b 36.7 b]	5.5 6	5.00	5.5 0	0.00	0.0 0	0.0 0
3 Roundup 3.3 b 18.3 b 43.3 b 43.3 b 11.7 b 36.7 b	2 NATURE'S AVENCED BY	100.0.0	100.0.0	577 -	00.2 -	00.2 -	04.0	
	2 WATONES AVENGER RIU	100.0 a	100.0 a	57.7 a	90.3 a	90.3 a	91.0 a	92./ a
	3 Roundup	22 h	10 2 h	42 2 h	42.2 h	42.2 %	44.7.5	20.7.1
LSD (P=.05) 7.56 13.62 10.79 8.41 8.41 6.39 6.72	- Noundup	3.3 D	10.3 B	43.3 D	43.3 D	43.3 D	11.7 B	36.7 b
7.50 15.02 10.79 6.41 8.41 6.39 6.72	I SD (P= 05)	7.50	12.62	10.70	0.44	0 44	630	6.70
	LOD (F =.03)	1.36	13.02	10.79	8.41	8.41	6.39	6.72

Means followed by same letter do not significantly differ (P=.05, Duncan's New MRT)

NATURE'S AVENGER ORGANIC RTU - EFFICACY EVALUATIONS

Trial ID: NATURE'S RTU

Location: ESCALON, CA

Protocol ID:

Study Director: OLAV MESSERSCHMIDT Investigator: Brooks Bauer

		55.1527 milde: 00m		., .,	A P 10-29-2006 % CONTROL PERCENT N.A. B. BAI	DEN 2 DA-A
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)	
Total	8	19422.222222				
Replicate	2	22.222222	11.111111	1.000	0.4444	
Treatment	2	19355.555556	9677.77778	871.000	0.0001	
Error	4	44.44444	11.111111			

AOV FOI W	MACC	SO STEINE COMMON C	HICKWEEG N.A. N.A	. N.A. PLA	ADEA P 10-29-2006 % CONTROL PERCENT N.A. B. BAUER 2 1 DA-A
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
Total	8	17222.222222			, , , , , , , , , , , , , , , , , , , ,
Replicate	2	72,222222	36.111111	1.000	0.4444
Treatment	2	17005.555556	8502.777778	235.462	2 0.0001
Error	4	144.444444	36.111111		

AOV For W	Wee	ed MALNE Cheeseplar	nt N.A. N.A. N.A. P	LADEA P	11-3-2006	% CONTROL PERCENT N.A. B. BAUER 7 1 DA-A
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)	
Total	8	5568.000000	04.000000			
Replicate	2	68.666667	34.333333	1.515		
Treatment	2	5408.666667	2704.333333	119.309	0.0003	
Error	4	90.666667	22.666667			

reatment	2	12246.888889	6123.444444	444.444	0.0001			
Replicate	2	24.222222	12.111111	0.879	0.4826			
Fotal	8	12326.222222						
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)			

AOV FOR W Weed AWAGR Pigweed, tumbling N.A. N.A. N.A. PLADEA P 11-3-2006 % CONTROL PERCENT N.A. B. BAUER 7 1 DA-A											
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)						
Total	8	12326.222222			` '						
Replicate	2	24.222222	12.111111	0.879	0.4826						
Treatment	2	12246.888889	6123.444444	444.444	0.0001						
Error	4	55.111111	13.777778								
		•									

Error	Δ	31.777778	7.944444					
Treatment	2	14710.888889	7355.444444	925.860	0.0001			
Replicate	2	10.888889	5.44444	0.685	0.5547			
Total	8	14753.555556						
	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)			

AOV For V	V Weed LACSE Lettuce, prickly N.A. N.A. N.A. P	LADEA P 11-3-2006 % CONTROL PERCENT N.A. B. BAUER 7 1 DA-A
SOURCE	DF SUM OF SQUARES MEAN SQUARE	F Prob(F)

000	₩,	0010 01 000711120			
Total	8	13166.888889			
Replicate	2	64.222222	32.111111	3.658	0.1249
Treatment	2	13067.555556	6533.777778	744.355	0.0001
Error	4	35.111111	8.777778		

Pest Type	W Weed			W Weed
Pest Code	POAAN			STEME
Pest Name	Annual blue>	Shepherd's >	Annual sowt>	Common chic>
Crop Code	N.A.	N.A.	N.A.	N.A.
BBCH Scale				
Crop Name	N.A.	N.A.	N.A.	N.A.
Crop Variety	N.A.	N.A.	N.A.	N.A.
Description				
Part Rated	PLADEA P	PLADEA P	PLADEA P	PLADEA P
Rating Date	11-3-2006	11-3-2006	11-3-2006	11-3-2006
Rating Data Type	% CONTROL	% CONTROL	% CONTROL	% CONTROL
Rating Unit	PERCENT	PERCENT	PERCENT	PERCENT
Sample Size				
Sample Size Unit				
Collection Basis				
Collection Basis Unit				
Number of Subsamples				
Crop Stage	N.A.	N.A.	N.A.	N.A.
Crop Stage Scale				
Crop Density, Unit				
Pest Stage				
Pest Density, Unit				
Footnote Number				
Assessed By	B. BAUER	B. BAUER	B. BAUER	B. BAUER
SE Name				
SE Description				
Rating Timing				
Days After First/Last Applic.	7	7	7	7
Trt-Eval Interval	1 DA-A	1 DA-A	1 DA-A	1 DA-A
Plant-Eval Interval				
ARM Action Codes				
Sort Order for View				
Number of Decimals				
Trt Treatment				
No. Name				
1 UNTREATED CONTROL	0.0 c	00-	0.0 -	0.0
I UNIKEATED CONTROL	V.U C	0.0 c	0.0 с	0.0 с
2 NATURE'S AVENGER RTU	100.0 a	97.3 a	98.7 a	100.0 a
	• • • •			
3 Roundup	90.0 b	36.0 b	28.3 b	35.0 b
LSD (P=.05)	6.54	6.59	9.53	6.54
· · · · · · · · · · · · · · · · · · ·			2.00	3.0 7

Means followed by same letter do not significantly differ (P=.05, Duncan's New MRT)

NATURE'S AVENGER ORGANIC RTU - EFFICACY EVALUATIONS

Trial ID: NATURE'S RTU

Protocol ID:

Total 8 18250.000000 Replicate 2 16.666667 8.333333 1.000 0.4444 Treatment 2 18200.000000 9100.000000 1092.000 0.0001 Error 4 33.333333 8.333333 AOV For W Weed CAPBP Shepherd's purse N.A. N.A. N.A. PLADEA P 11-3-2006 % CONTROL PERCENT N.A. B. BAUER 7 1 DA-A SOURCE DF SUM OF SQUARES MEAN SQUARE F Prob(F) Total 8 14600.222222 Replicate 2 34.888889 17.444444 2.066 0.2420 Treatment 2 14531.555556 7265.777778 860.421 0.0001 Error 4 33.777778 8.444444 AOV For W Weed SONOL Annual sowthistle N.A. N.A. N.A. PLADEA P 11-3-2006 % CONTROL PERCENT N.A. B. BAUER 7 1 DA-A SOURCE DF SUM OF SQUARES MEAN SQUARE F Prob(F) Total 8 15604.000000 Replicate 2 48.666667 24.333333 1.377 0.3507 Treatment 2 15484.666667 7742.333333 438.245 0.0001	Locati	lon:	ESCALON, CA				MESSERSCHMIDT ks Bauer			
Total 8 18250.000000 Replicate 2 16.666667 8.333333 1.000 0.4444 Treatment 2 18200.000000 9100.000000 1092.000 0.0001 Error 4 33.333333 8.333333 AOV For W Weed CAPBP Shepherd's purse N.A. N.A. N.A. PLADEA P 11-3-2006 % CONTROL PERCENT N.A. B. BAUER 7 1 DA-A SOURCE DF SUM OF SQUARES MEAN SQUARE F Prob(F) Total 8 14600.222222 Replicate 2 34.888889 17.444444 2.066 0.2420 Treatment 2 14531.555556 7265.777778 860.421 0.0001 Error 4 33.777778 8.444444 AOV For W Weed SONOL Annual sowthistle N.A. N.A. N.A. PLADEA P 11-3-2006 % CONTROL PERCENT N.A. B. BAUER 7 1 DA-A SOURCE DF SUM OF SQUARES MEAN SQUARE F Prob(F) Total 8 15604.000000 Replicate 2 48.666667 24.333333 1.377 0.3507 Treatment 2 15484.666667 7742.333333 438.245 0.0001	AOV For W	Wee	d POAAN Annual blue	egrass N.A. N.A. N	I.A. PLADI	EA P 11-3	-2006 % CONTROL PERCENT N.A. B. BAUER 7 1 DA-A			
Replicate 2 16.666667 8.333333 1.000 0.4444 Treatment 2 18200.000000 9100.000000 1092.000 0.0001 Error 4 33.333333 8.333333 AOV For W Weed CAPBP Shepherd's purse N.A. N.A. N.A. PLADEA P 11-3-2006 % CONTROL PERCENT N.A. B. BAUER 7 1 DA-A SOURCE DF SUM OF SQUARES MEAN SQUARE F Prob(F) Total 8 14600.222222 Replicate 2 34.888889 17.444444 2.066 0.2420 Treatment 2 14531.555556 7265.777778 860.421 0.0001 Error 4 33.777778 8.444444 AOV For W Weed SONOL Annual sowthistle N.A. N.A. N.A. PLADEA P 11-3-2006 % CONTROL PERCENT N.A. B. BAUER 7 1 DA-A SOURCE DF SUM OF SQUARES MEAN SQUARE F Prob(F) Total 8 15604.000000 Replicate 2 48.666667 24.333333 1.377 0.3507 Treatment 2 15484.666667 7742.333333 438.245 0.0001	SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)				
Treatment 2 18200.000000 9100.000000 1092.000 0.0001 Error 4 33.333333 8.333333 AOV For W Weed CAPBP Shepherd's purse N.A. N.A. N.A. PLADEA P 11-3-2006 % CONTROL PERCENT N.A. B. BAUER 7 1 DA-A SOURCE DF SUM OF SQUARES MEAN SQUARE F Prob(F) Total 8 14600.222222 Replicate 2 34.888899 17.444444 2.066 0.2420 Treatment 2 14531.555556 7265.777778 860.421 0.0001 Error 4 33.777778 8.444444 AOV For W Weed SONOL Annual sowthistle N.A. N.A. N.A. PLADEA P 11-3-2006 % CONTROL PERCENT N.A. B. BAUER 7 1 DA-A SOURCE DF SUM OF SQUARES MEAN SQUARE F Prob(F) Total 8 15604.000000 Replicate 2 48.666667 24.333333 1.377 0.3507 Treatment 2 15484.666667 7742.333333 438.245 0.0001	Total	8	18250.000000							
Error 4 33.333333 8.333333 AOV For W Weed CAPBP Shepherd's purse N.A. N.A. N.A. PLADEA P 11-3-2006 % CONTROL PERCENT N.A. B. BAUER 7 1 DA-A SOURCE DF SUM OF SQUARES MEAN SQUARE F Prob(F) Total 8 14600.222222 Replicate 2 34.888889 17.444444 2.066 0.2420 Treatment 2 14531.555556 7265.777778 860.421 0.0001 Error 4 33.777778 8.444444 AOV For W Weed SONOL Annual sowthistle N.A. N.A. N.A. PLADEA P 11-3-2006 % CONTROL PERCENT N.A. B. BAUER 7 1 DA-A SOURCE DF SUM OF SQUARES MEAN SQUARE F Prob(F) Total 8 15604.000000 Replicate 2 48.666667 24.333333 1.377 0.3507 Treatment 2 15484.666667 7742.333333 438.245 0.0001	Replicate	2	16.666667	8.333333	1.000	0.4444				
AOV For W Weed CAPBP Shepherd's purse N.A. N.A. N.A. PLADEA P 11-3-2006 % CONTROL PERCENT N.A. B. BAUER 7 1 DA-A SOURCE DF SUM OF SQUARES MEAN SQUARE F Prob(F) Total 8 14600.222222 Replicate 2 34.888889 17.444444 2.066 0.2420 Treatment 2 14531.555556 7265.777778 860.421 0.0001 Error 4 33.777778 8.444444 AOV For W Weed SONOL Annual sowthistle N.A. N.A. N.A. PLADEA P 11-3-2006 % CONTROL PERCENT N.A. B. BAUER 7 1 DA-A SOURCE DF SUM OF SQUARES MEAN SQUARE F Prob(F) Total 8 15604.000000 Replicate 2 48.666667 24.333333 1.377 0.3507 Treatment 2 15484.666667 7742.333333 438.245 0.0001	Treatment	2	18200.000000	9100.000000	1092.000	0.0001				
SOURCE DF SUM OF SQUARES MEAN SQUARE F Prob(F) Total 8 14600.222222 Replicate 2 34.888889 17.444444 2.066 0.2420 Treatment 2 14531.555556 7265.777778 860.421 0.0001 Error 4 33.777778 8.444444 AOV For W Weed SONOL Annual sowthistle N.A. N.A. N.A. PLADEA P 11-3-2006 % CONTROL PERCENT N.A. B. BAUER 7 1 DA-A SOURCE DF SUM OF SQUARES MEAN SQUARE F Prob(F) Total 8 15604.000000 Replicate 2 48.666667 24.333333 1.377 0.3507 Treatment 2 15484.666667 7742.333333 438.245 0.0001	Error	4	33.333333	8.333333						
Total 8 14600.222222 Replicate 2 34.888889 17.444444 2.066 0.2420 Treatment 2 14531.555556 7265.777778 860.421 0.0001 Error 4 33.777778 8.444444 AOV For W Weed SONOL Annual sowthistle N.A. N.A. N.A. PLADEA P 11-3-2006 % CONTROL PERCENT N.A. B. BAUER 7 1 DA-A SOURCE DF SUM OF SQUARES MEAN SQUARE F Prob(F) Total 8 15604.000000 Replicate 2 48.666667 24.333333 1.377 0.3507 Treatment 2 15484.666667 7742.333333 438.245 0.0001	AOV For W Weed CAPBP Shepherd's purse N.A. N.A. N.A. PLADEA P 11-3-2006 % CONTROL PERCENT N.A. B. BAUER 7 1 DA-A									
Replicate 2 34.888889 17.444444 2.066 0.2420 Treatment 2 14531.555556 7265.777778 860.421 0.0001 Error 4 33.777778 8.444444 AOV For W Weed SONOL Annual sowthistle N.A. N.A. N.A. PLADEA P 11-3-2006 % CONTROL PERCENT N.A. B. BAUER 7 1 DA-A SOURCE DF SUM OF SQUARES MEAN SQUARE F Prob(F) Total 8 15604.000000 Replicate 2 48.666667 24.333333 1.377 0.3507 Treatment 2 15484.666667 7742.333333 438.245 0.0001	SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)				
Treatment 2 14531.555556 7265.777778 860.421 0.0001 Error 4 33.777778 8.444444 AOV For W Weed SONOL Annual sowthistle N.A. N.A. N.A. PLADEA P 11-3-2006 % CONTROL PERCENT N.A. B. BAUER 7 1 DA-A SOURCE DF SUM OF SQUARES MEAN SQUARE F Prob(F) Total 8 15604.000000 Replicate 2 48.666667 24.333333 1.377 0.3507 Treatment 2 15484.666667 7742.333333 438.245 0.0001	Total	8	14600.222222							
Error 4 33.777778 8.444444 AOV For W Weed SONOL Annual sowthistle N.A. N.A. N.A. PLADEA P 11-3-2006 % CONTROL PERCENT N.A. B. BAUER 7 1 DA-A SOURCE DF SUM OF SQUARES MEAN SQUARE F Prob(F) Total 8 15604.000000 Replicate 2 48.666667 24.333333 1.377 0.3507 Treatment 2 15484.666667 7742.333333 438.245 0.0001	Replicate	2	34.888889	17.444444	2.066	0.2420				
AOV For W Weed SONOL Annual sowthistle N.A. N.A. N.A. PLADEA P 11-3-2006 % CONTROL PERCENT N.A. B. BAUER 7 1 DA-A SOURCE DF SUM OF SQUARES MEAN SQUARE F Prob(F) Total 8 15604.000000 Replicate 2 48.666667 24.333333 1.377 0.3507 Treatment 2 15484.666667 7742.333333 438.245 0.0001	Treatment	2	14531.555556	7265.777778	860.421	0.0001				
SOURCE DF SUM OF SQUARES MEAN SQUARE F Prob(F) Total 8 15604.000000 Replicate 2 48.666667 24.333333 1.377 0.3507 Treatment 2 15484.666667 7742.333333 438.245 0.0001	Error	4	33.777778	8.44444						
Total 8 15604.000000 Replicate 2 48.666667 24.333333 1.377 0.3507 Treatment 2 15484.666667 7742.333333 438.245 0.0001	AOV For W	Wee	ed SONOL Annual sow	thistle N.A. N.A. N	I.A. PLAD	EA P 11-3	-2006 % CONTROL PERCENT N.A. B. BAUER 7 1 DA-A			
Total 8 15604.000000 Replicate 2 48.666667 24.333333 1.377 0.3507 Treatment 2 15484.666667 7742.333333 438.245 0.0001	SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)				
Treatment 2 15484.666667 7742.333333 438.245 0.0001	Total	8	15604.000000							
Treatment 2 15484.666667 7742.333333 438.245 0.0001	Replicate	2	48.666667	24.333333	1.377	0.3507				
Error 4 70.666667 17.666667	Treatment	2	15484.666667	7742.333333	438.245	0.0001				
	Error	4	70.666667	17.666667			•			

AOV For W Weed STEME Common chickweed N.A. N.A. N.A. PLADEA	P 11-3-2006 % CONTROL PERCENT N.A. B. BAUER 7 1 DA-A
---	--

SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
Total	8	15500.000000			
Replicate	2	16.666667	8.333333	1.000	0.4444
Treatment	2	15450.000000	7725.000000	927.000	0.0001
Error	4	33.333333	8.333333		

2-22-2007 (NATURE'S RTU)

Two Bees Agricultural Research & Consulting

NATURE'S AVENGER ORGANIC RTU - EFFICACY EVALUATIONS

Trial ID: NATURE'S RTU Location: ESCALON, CA

Protocol ID:

Study Director: OLAV MESSERSCHMIDT Investigator: Brooks Bauer

No plot data footnotes entered in study

NATURE'S AVENGER ORGANIC RTU - EFFICACY EVALUATIONS

Trial ID: NATURE'S RTU Location: ESCALON, CA

Protocol ID:

Study Director: OLAV MESSERSCHMIDT Investigator: Brooks Bauer

Pest Type	W Weed	W Weed	W Weed	W Weed	W Weed	W Weed	W Weed
Pest Code	MALNE	AMARE	AMAGR	POROL	LACSE	POAAN	CAPBP
Pest Name		RED ROOT PI>	Pigweed, tu>	Purslane, c>	Lettuce, pr>:	Annual blue>	Shepherd's >
Crop Code	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
BBCH Scale							
Crop Name	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
Crop Variety	N.A.	N.A.	N.A.	N.A.)	N.A.	N.A.	N.A.
Description	DI 40.55			-			[
Part Rated	PLADEA P	PLADEA P	PLADEA P	PLADEA P	PLADEA P	PLADEA P	PLADEA P
Rating Date	10-29-2006	10-29-2006	10-29-2006	10-29-2006	10-29-2006	10-29-2006	10-29-2006
Rating Data Type	% CONTROL			% CONTROL			
Rating Unit	PERCENT	PERCENT	PERCENT	PERCENT	PERCENT	PERCENT	PERCENT
Sample Size							
Sample Size Unit							
Collection Basis	1						
Collection Basis Unit							
Number of Subsamples							
Crop Stage	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
Crop Stage Scale							
Crop Density, Unit			'				
Pest Stage							
Pest Density, Unit Footnote Number							ĺ
Assessed By	B. BAUER	B. BAUER	B. BAUER	D DALIED	D DALIED	5 541155	
SE Name	D. DAUER	B. BAUEK	B. BAUER	B. BAUER	B. BAUER	B. BAUER	B. BAUER
SE Description						!	
Rating Timing							
Days After First/Last Applic.	2	2	•	3	_	١ ,	ا
Trt-Eval Interval	1 DA-Â	1 DA-A	1 DA-A	1 DA-A	1 DA-Ā	2 1 DA-A	4 5 4 5
Plant-Eval Interval	ו טאיא	I DA-A	I DA-A	I DA-A	I DA-A	I DA-A	1 DA-A
ARM Action Codes							
Sort Order for View							
Number of Decimals							
Trt Treatment			-				
No. Name							
7.4.							
1 UNTREATED CONTROL	0.0	0.0	0.0	0.0	0.0		
	0.0	0.0	0.0	0.0	0.0		0.0
	0.0	. 0.0	0.0	0.0	0.0	0.0	0.0
Mean =	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2 NATURE'S AVENGER RTU	85.0	100.0	100.0	100.0	100.0		
2 TORES AVERGENTIO	90.0	100.0	100.0	100.0	100.0		90.0
	85.0	100.0	100.0	100.0	100.0		100.0
1	55.0	100.0	100.0	100.0	100.0	65.0	100.0
Mean =	86.7	100.0	100.0	100.0	100.0	90.0	96.7
3 Roundup	15.0	15.0	15.0	10.0	0.0	35.0	15.0
· ·	0.0	15.0	15.0	10.0	0.0		
	0.0	30.0	30.0	15.0	0.0		
Mean =	5.0	20.0	20.0	11.7	0.0	45.0	25.0

						<u>suitiiig</u>	_
Pest Type	W Weed	W Weed	W Weed	W Weed	W Weed	W Weed	W Weed
Pest Code	SONOL	STEME	MALNE	AMARE	AMAGR	POROL	LACSE
Pest Name	Annual sowt>	Common chic>	Cheeseplant	RED ROOT PI>	Pigweed, tu>	Purslane, c>	Lettuce, pr>
Crop Code	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
;BBCH Scale							14.74
Crop Name	N.A.	N,A.	N.A.	N.A.	N.A.	N.A.	N.A.
Crop Variety	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
Description						14.7 %	14.74.
Part Rated	PLADEA P	PLADEA P	PLADEA P	PLADEA P	PLADEA P	PLADEA P	PLADEA P
Rating Date	10-29-2006	10-29-2006	11-3-2006	11-3-2006	11-3-2006	11-3-2006	11-3-2006
Rating Data Type	% CONTROL	% CONTROL			% CONTROL	% CONTROL	% CONTROL
Rating Unit	PERCENT	PERCENT	PERCENT	PERCENT	PERCENT	PERCENT	PERCENT
Sample Size						LINOLINI	LINOLIA
Sample Size Unit							
Collection Basis							
Collection Basis Unit							
Number of Subsamples							
Crop Stage	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
Crop Stage Scale						14	14.74.
Crop Density, Unit							
Pest Stage							
Pest Density, Unit			1				
Footnote Number							
Assessed By	B. BAUER	B. BAUER	B. BAUER	B. BAUER	B. BAUER	B. BAUER	B. BAUER
SE Name							- D. C. (OL)
SE Description							
Rating Timing			:				
Days After First/Last Applic.	2	2	7	7	7	7	7
Trt-Eval Interval	1 DA-A	1 DA-A	1 DA-A	1 DA-A	1 DA-A	1 DA-A	1 DA-A
Plant-Eval Interval							
ARM Action Codes		:					
Sort Order for View							
Number of Decimals							
Trt Treatment			-		-		
No. Name							
1 UNTREATED CONTROL	0.0	0.0	0.0	0.0			
STATE ITED CONTINUE	0.0	0.0	0.0	0.0	0.0 0.0	0.0	0.0
]	0.0	0.0	0.0	0.0		0.0	0.0
	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Mean =	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2 NATURE'S AVENGER RTU	100.0	100.0	60.0	90.0	90.0	90.0	95.0
	100.0	100.0	63.0	88.0	88.0	88.0	95.0 88.0
	100.0	100.0	50.0	93.0	93.0	95.0	95.0
			50.0	33.0	55.0	35.0	3 5.0
Mean =	100.0	100.0	57.7	90.3	90.3	91.0	92.7
3 Roundup	0.0	15.0	50.0	50.0	50.0	15.0	40.0
	10.0	10.0	40.0	40.0	40.0	10.0	30.0
	0.0	30.0	40.0	40.0	40.0	10.0	40.0
	_]					[
Mean =	3.3	18.3	43.3	43.3	43.3	11.7	36.7
			·I		***************************************		

	O Dees	Agricu	itulai	researci
Pest Type	W Weed	W Weed	W Weed	W Weed
Pest Code	POAAN	CAPBP		STEME
Pest Name	Annual blue>			Common chic>
Crop Code	N.A.	N.A.	N.A.	N.A.
BBCH Scale	l			
Crop Name	l N.A.	N.A.	N.A.	N.A.
Crop Variety	N.A.	N.A.	N.A.	N.A.
Description			11.5%	14.74.
Part Rated	PLADEA P	PLADEA P	PLADEA P	PLADEA P
Rating Date	11-3-2006	11-3-2006	11-3-2006	11-3-2006
Rating Data Type	% CONTROL		% CONTROL	% CONTROL
Rating Unit	PERCENT	PERCENT	PERCENT	PERCENT
Sample Size	. 2	LINOLINI	LINOLINI	PERCENT
Sample Size Unit	1			
Collection Basis				
Collection Basis Unit				
Number of Subsamples			*	
Crop Stage	N.A.	N.A.	N.A.	N.A.
Crop Stage Scale		14.71.	14.77.	N.A.
Crop Density, Unit				
Pest Stage				
Pest Density, Unit			1	
Footnote Number				
Assessed By	B. BAUER	B. BAUER	B. BAUER	B. BAUER
SE Name	D. DAGEI	D. BAULK	D. DAUER	D. DAUEK
SE Description				
Rating Timing				
Days After First/Last Applic.	7	7	7	7
Trt-Eval Interval	1 DA-Á	1 DA-A	1 DA-A	1 DA-A
Plant-Eval Interval	1 57(4)(ו טאיא	ו אייאט	I DA-A
ARM Action Codes				
Sort Order for View		i		
Number of Decimals				
Trt Treatment				
No. Name				
1 UNTREATED CONTROL	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0
Mean =	0.0	0.0	0.0	0.0
2 NATURE'S AVENGER RTU	100.0	97.0	98.0	100.0
	100.0	95.0	98.0	100.0
	100.0	100.0	100.0	100.0
Mean =	100.0	97.3	98.7	100.0
3 Roundup	95.0	40.0		
3 Noundup	85.0 85.0	40.0 30.0	30.0	30.0
	90.0		20.0	40.0
1	90.0	38.0	35.0	35.0
Mean =	90.0	36.0	28.3	35.0
			20.0	00.0

Florida field mustard (Sinapis sp.), 2-3 leaf stage

Nature's Avenger Organic Herbicide (EPA Reg. No. 82052-1)

Consultant/Applicator:

Name

Tom Lanini

Affiliation

University of California, Dept. of Plant Sciences

Address

One Shields Avenue

Davis, CA 95616

-	ort: University of California, Davort Date:	vis	Percent Control Application Date: December 20, 2006							
	Treatments	Application Rate (% AI)	2 D.	AT	13 D	AT	37 [)AT		
1	Untreated		0.0	ь	0.0	f	0.0	е		
2	Nature's Avenger – 70 gpa	8.2	1.25	b	17.5	de	28.75	cd		
3	Nature's Avenger - 70 gpa	10.0	10.0	a	30.0	cd	40.0	c		
4	Nature's Avenger – 70 gpa	12.7	17.5	a	46.25	b	63.75	ъ		
5	Nature's Avenger - 70 gpa	17.5	15.0	a	82.5	a	90.75	a		
6	Nature's Avenger RTU -70 gpa	17.5	0.0	b	76.25	a	80.0	a		
7	Acetic acid – 70 gpa	10 % dilution	2.5	b	12.5	ef	5.0	е		
8	Matran EC - 35 gpa	10 % dilution	17.5	a	82.5	a	23.75	d		
	LSD (P = .05)			.9	15	.8	16.6			

Means followed by same letter do not significantly differ (P=.05, Duncan's New MRT)

Florida field mustard (Sinapis sp.), 4-5 leaf stage

Nature's Avenger Organic Herbicide (EPA Reg. No. 82052-1)

Consultant/Applicator:

Name

Tom Lanini

Affiliation

University of California, Dept. of Plant Sciences

Address

One Shields Avenue

Davis, CA 95616

_	ort: University of California, Dav	ris	Percent Control Application Date: January 19, 2007							
	Treatments	Application Rate (% AI)	1 D	AT	13 D	AT	34 DAT			
1	Untreated		0.0	d	0.0	d	0.0	С		
2	Nature's Avenger – 140 gpa	10.0	16.25	ъ	85.0	a	57.5	a		
3	Nature's Avenger – 70 gpa	10.0	17.5	b	38.75	С	37.5	ab		
4	Nature's Avenger – 70 gpa	12.7	20.0	Ъ	65.0	Ъ	55.0	a		
5	Nature's Avenger – 70 gpa	17.5	28.75	а	52.5	b	25.0	bc		
6	Nature's Avenger RTU -70 gpa	17.5	26.25	a	56.25	b	37.5	ab		
7	Acetic acid - 70 gpa	10 % dilution	8.75	С	13.75	d	7.5	С		
8	Matran EC – 35 gpa	10 % dilution	17.5	b	36.25	c	25.0	bc		
	LSD $(P = .05)$	6.6		15.5		28.3				

Means followed by same letter do not significantly differ (P=.05, Duncan's New MRT)

Comparison of Organic Herbicides for control of Brown Mustard (Brassica juncea)

W. Thomas Lanini, Dept. of Plant Sciences, University of California, Davis

Natural product herbicides have the potential to play an important role on organic farms by reducing reliance on tillage and cultivation and replacing expensive hand weeding operations. Commercially available natural product herbicides containing either vinegar (acetic acid) or clove oil (eugenol) are increasing in demand by organic growers, but only limited information is available on their effective use. Greenhouse and field trials have shown that vinegar applied in concentrations between 10 and 30% can effectively suppress multiple broadleaf weed species, but cannot consistently control grasses (Curran et al. 2003). Clove oil at concentrations of 1 to 10 % has also been demonstrated to provide good control of several broadleaf weed species in some studies (Curran et al., 2003; Tworkoski, 2002), but inconsistent control in others.

Although natural product herbicides are potentially valuable, effective rates of currently available products are often both prohibitively expensive and potentially toxic. For example, 20% vinegar (acetic acid) can cause skin burns and eye damage (Sullivan 2004). Clove oil based herbicides like Matran II, can cost over \$250/A if broadcast at even the lowest recommended rate. Preliminary research suggests that effective rates of these products can be reduced through improved knowledge of the impact of growth stage and weather conditions on efficacy. For example, in preliminary greenhouse trials, clove oil was effective in controlling weeds at a 1% concentration when weeds were in the cotyledon stage (Lanini, unpublished). Anecdotal evidence also suggests that the effectiveness of these products may be increased under sunny conditions or high relative humidity, but more information is needed to assess these factors. Reductions in rates may also be achieved through better characterization of the sensitivity of specific weeds at different growth stages. The objective of this study was to assess the efficacy of several organic herbicides for controlling mustard (*Brassica juncea*).

Methods

A field study was conducted at UC Davis Vegetable Crops farm in the Fall/winter, 2006/2007. Brown mustard was planted in October, 2006, as a single row per bed, with rows spaced 5ft. Mustard was sprinkler irrigated to assist germination, with natural rainfall providing subsequent moisture. On Dec. 20, 2006, the first trial was established when mustard was in the 2 to 3 leaf stage of development. Treatments were arranged in a randomized complete block design with four replications. Treatments were applied using a CO₂ backpack sprayer and a spray pressure of 30 psi, treating the entire 5ft. bed. Treatments are shown in Table 1. Additional weeds present at the time treatment included Fiddleneck (Amsinckia menziesii var. intermedia) – 3 inches and

shepherdspurse (*Capsella bursa-pastoris*) -1-2 inches. Weed control (% control) was visually estimated on December 22, 25, 29, 2006, and January 2, 24, 2007. A second study in an adjoining set of plots was established on January 19, 2007, when mustard was in the 4-5 leaf stage of development. Plot arrangement and number of replications was the same in the second trial. Application equipment was the also same as used for the first mustard study and treatments were the same except where noted in Table 1. Weed control was evaluated on January 20, 24, February 2, and 23, 2007.

Results

Increasing the concentration of the active ingredient for all the products appeared to improve mustard control (Table 2). The fastest acting product at the 2-3-leaf stage of mustard growth was Matran EC at the 15% and 20% concentrations, providing over 35% control at 2 days after treatment (DAT) and over 90% control by 5 DAT. MOI-001 at 17.5% concentration and also the RTU formulation of MOI-001 provided equivalent control to the Matran EC (15% and 20%) treatments by 9 DAT and these treatments were still providing the best control at 37 DAT. Lower concentrations of MOI-001 (8.75%, 10%, and 12.7%) were less effective in controlling mustard, compared to Matran EC at 15% or 20%, however they were equivalent with Matran EC applied at 5% or 10% concentrations at 37 DAT. Acetic acid at 20% provided over 60% mustard control at 5 to 13 DAT, but lower concentrations were much less effective. Matran EC appeared to control mustard more rapidly than did other treatments, however, MOI-001 was equivalent to Matran by the end of the study. Neither surfactant nor higher pH improved the performance of MOI-001 10% concentration.

Organic herbicides were generally less effective at controlling mustard at the 4-5 leaf stage of growth, compared to the 2-3 leaf stage (Tables 2 and 3). Acetic acid caused spotting and some tissue necrosis, but mustard growth was only temporarily stunted. Matran EC at 10 to 20% fair control (30 to 50%) by 13 DAT, but controlled declined considerably by 34 DAT. MOI-001 applied at 70 gpa was equivalent to Matran EC through the 13 DAT evaluation, but were generally providing better control by 34 DAT. Increasing the spray volume to 140 gpa improved activity of MOI-001 considerably, with 72.5% control at 5DAT, 85% control at 13DAT and 57.5% control at 34DAT. Thus higher spray volume appears to be needed for control of larger weeds. Modifying the pH of the MOI-001 spray solutions resulted in slight improvements (not statistically significant) in weed control. MOI-001 and Matran EC were significantly better at controlling 4-5 leaf mustard in this study, compared to acetic acid, C-cide, or Weed Zap treatments.

Table 1. Treatment, rate applied, and spray volume. Treatments at the 2-3 leaf mustard or 4-5 leaf stage*.

	Treatment	Conc.	Spray volume
1.	Acetic acid ¹	5%	70 gpa
2.	Acetic acid ¹	10%	70 gpa
3.	Acetic acid ¹	15%	70 gpa
4.	Acetic acid ¹	20%	70 gpa
5.	Matran EC ²	5%	35 gpa
6.	Matran EC ²	10%	35 gpa
7.	Matran EC ²	15%	35 gpa
8.	Matran EC ²	20%	35 gpa
9.	MOI-001	8.75%	70 gpa
	9b. MOI-001	10%	140 gpa
10.	. MOI-001	10%	70 gpa
11.	. MOI-001	12.7%	70 gpa
12.	. MOI-001	17.5%	70 gpa
13.	. MOI-001	RTU	70 gpa
14.	MOI-001 + Natur'l Wet	10% + 1% v/v	70 gpa
	14b. MOI-001	10% -pH 8.0	70 gpa
15	. C-cide	1.6% (1:2 dilution)	70 gpa
16	. C-cide	1% (1:4 dilution)	70 gpa
17	. Weed Zap ²	5%	35 gpa
18	. Untreated		

^{*} Treatments 9b and 14b were applied to 4-leaf mustard in place of treatments 9 and 14.

1 Add 0.1% yucca extract as the adjuvant.

2 Add 2.5% Humasol as the adjuvant.

Table 2. Mustard (*Brassica juncea*) control (%) at 2, 5, 9, 13, and 37 DAT, after treatment with organic herbicides. Mustard was treated at the 2 to 3-leaf stage on Dec. 20, 2006. Temperature 45F and 66% humidity at the time of treatment.

Treatment				%	Mustar	d con	trol			
	2 DAT		5 DAT		9 DAT		13 DAT		37 DAT	
Acetic acid 5%	1.25	С	6.25	g	6.25	fg	5.00	f	5.00	е
Acetic acid 10%	2.50	С	10.00	g	12.50	fg	12.50	f	5.00	е
Acetic acid 15%	2.50	O	22.50	ef	23/75	е	26.25	de	22.50	de
Acetic acid 20%	16.25	Ь	62.50	С	61.25	b	61.25	bc	28.75	d
Matran EC 5 %	3.75	c	12.50	fg	12.50	fg	17.50	ef	5.00	е
Matran EC 10%	17.50	b	77.50	b	81.25	a	82.50	ab	23.75	de
Matran EC 15%	37.50	a	91.25	a	92.50	a	92.50	a	75.00	ab
Matran EC 20%	45.00	a	95.00	a	95.00	a	95.00	a	83.75	a
MOI-001 8.2%	1.25	C	11.25	g	13.75	fg	17.50	ef	28.75	d
MOI-001 10%	10,00	b	20.00	fg	28.75	e	30.00	d	40.00	С
MOI-001 12.7%	17.50	b	35.00	е	45.00	cd	46.25	cd	63.75	b
MOI-01 17.5%	15.00	b	55.00	cd	80.00	a	82.50	ab	90.75	а
MOI-001 RTU	0.00	С	50.00	cd	66.25	ab	76.25	b	80.00	ab
MOI-001 10%+	6.25	С	21.25	fg	30.00	de	33.75	d	22.50	de
C-cide 1.6%	5.00	С	45.00	de	50.00	bc	63.75	b	46.25	С
C-cide 1%	3.75	С	17.50	fg	17.50	ef	21.25	def	11.25	e
Weed Zap 5%	5.00	С	30.00	e	30.00	de	28.75	de	28.75	d
Untreated	0.00	c	0.00	g	0.00	g	0.00	f	0.00	е
LSD $(p = 0.05)$	11.948		13.024		15.044		15.804		16.586	

Table 3. Mustard (*Brassica juncea*) control (%) at 1, 5, 13, and 34 DAT, after treatment with organic herbicides. Mustard was treated at the 4 to 5-leaf stage on Jan, 19, 2007. Temperature 50F and 55% humidity at the time of treatment.

Treatment	% Mustard control										
	1 DAT		5 DAT		13 DAT		34 DAT				
Acetic acid 5%	0.00	g	6.25	fg	8.75	fg	12.50	С			
Acetic acid 10%	8.75	ef	11.25	f	13.75	fg	7.50	С			
Acetic acid 15%	13.75	е	18.75	ef	15.00	fg	5.00	С			
Acetic acid 20%	21.25	cd	27.50	de	21.25	de	7.50	С			
Matran EC 5 %	2.50	fe	8.75	fg	10.00	fg	15.00	С			
Matran EC 10%	17.50	d	23.75	de	36.25	cd	25.00	bc			
Matran EC 15%	25.00	bc	46.25	С	33.75	cde	12.50	С			
Matran EC 20%	35.00	a	52.50	b	50.00	bc	30.00	ab			
MOI-001 10% 140 gpa	16.25	d	72.50	a	85.00	a	57.50	a			
MOI-001 10%	17.50	d	31.25	cd	38.75	С	37.50	ab			
MOI-001 12.7%	20.00	cd	52.50	b	65.00	b	55.00	a			
MOI-01 17.5%	28.75	ab	52.50	ь	52.50	bc	25.00	bc			
MOI-001 RTU	26.25	bc	57.50	b	56.25	b	37.50	ab			
MOI-001 10% pH 8	18.75	d	41.25	Ç	50.00	bc	50.00	ab			
C-cide 1.6%	8.75	ef	30.00	d	33.75	cde	5.00	С			
C-cide 1%	5.00	fg	20.00	ef	18.75	ef	6.25	С			
Weed Zap 5%	7.50	ef	11.25	f	15.00	fg	5.00	С			
Untreated	0.00	g	0.00	g	0.00	g	0.00	С			
LSD $(p = 0.05)$	6.630		10.980		15.544		28.346				

Table 4. Comparison of MOI-001 treatments – 2-3 leaf stage

_	2 DAT		5 DAT		9 DAT		13 DAT		37 DAT	
UTC	0	b	0	d	0	d	0	d	0	e
8.2%	1.25	b	11.25	cd	13.75	cd	17.5	cd	28.75	cd
10%	10	ab	20	cd	28.75	bc	30	bc	40	c
12.7%	17.5	a	35	b	45	b	46.25	b	63.75	bc
17.5%	15	ab	55	a	80	a	82.5	a	90.75	a
RTU 17.5%	0	b	50	a	66.25	a	76.25	a	80	ab
10% + surfactant	6.25	b	21.25	bc	30	bc	33.75	bc	22.5	d
LSD	10.2		14.7		18.3		18.9		16.7	

First study with mustard at 2.25 to 3-leaf stage

- 1. All MOI-001 treatments performed significantly better than the untreated control
- 2. The MOI-001 concentrate at 1:3 dilution gave 90 % control of small (mustard) weeds.
- 3. RTU at the same AI % was slightly less effective at all evaluation points, but not significantly
- 4. After two weeks, MOI-001 at 1:4 controlled less than 50 % of weeds.
- 5. Concentration of limonene (= dilution) made a significant difference in the results 1:7 being the worst of all treatments at all time points.
- 6. Surfactant (Natural Wet, 1%) did not improve the performance of MOI-001 at 1:6 dilution. At 37 DAT, it was significantly less effective than MOI-001 alone.

Table 5. Comparison of MOI-001 treatments – 4-5 leaf stage

	-				_	,	
	1DAT		5 DAT		13 DAT		34 DAT
UTC	0	С	0	d	0	d	0
10% 140 gpa	16.25	b	72.5	a	85	a	57.5
10%	17.5	ь	31.25	с	38.75	С	37.5
12.70%	20	b	52.5	b	65	ab	55
17.5%	28.75	a	52.5	b	52.5	bc	25
RTU 17.5%	26.25	a	57.5	ab	56.25	bc	37.5
10% pH8.0	18.75	ь	41.25	bc	50	bc	50
LSD	5,6		17.0		23.3		ns

Second study with mustard at 4-5 -leaf stage

- 1. All MOI-001 treatments performed significantly better than the untreated control.
- 2. The highest concentration of limonene controlled more than 25 % of weeds at 1 DAT.
- 3. Coverage (volume of liquid per acre) affected the % control the most the more liquid the better control.
- 4 Both 1:3 and 1:4 dilutions gave similar results to RTU.
- 5. 1:6 dilution (10 % limonene) at 70 gpa was significantly less effective than at 140 gpa
- 6. Treatment with higher pH performed a little better than the one without pH adjustment but the difference was not statistically significant.

Literature Cited:

- Curran, W.S., D.D. Lingenfelter, and C.B. Muse. 2003. Vinegar and clove oil for non-selective control of annual weeds. Proceedings of the Northeastern Weed Science Society 88: 21.
- Sullivan, P. 2004. Field bindweed control alternatives. Current Topic 106. ATTRA Publication 103. National Sustainable Agriculture Information Service: Fayetteville, AR. 6pp.
- Tworkoski, T. 2002. Herbicide effects of essential oils. Weed Sci. 50(4): 425-431.

Common weeds in a Field Study 1

(Trifolium spp., Amsinckia spp., Poa annua, Erodium cicutarium, Silybium marianum)

Nature's Avenger Organic Herbicide (EPA Reg. No. 82052-1)

Consultant/Applicator:

Name

Marja Koivunen

Affiliation:

Marrone Organic Innovations

Address:

215 Madson Place, Davis, CA 95618

_	ort: Marrone Organic Innovation ort Date: January 31, 2007	% Weed Control Application Date: November 24, 2006							
Treatments		Application Rate (% AI)	(1143 1		30 DAT		60 DAT		
1	Untreated		0	b	0	b	0	С	
2	Nature's Avenger RTU	21.6 %	99.25	a	97.5	a	90.25	b	
3	Nature's Avenger RTU	17.5 %	100	a	100	a	95.25	bc	
4	Nature's Avenger concentrate	11.7 %	100	a	100	a	98.75	С	
	LSD $(p = 0.05)$		1.1		3.8		7.7		

Application rate 180 gpa

Means followed by same letter do not significantly differ (P=.05, Duncan's New MRT)

Conclusions:

Nature's Avenger RTUs and concentrate at 1:5 dilution provided a complete control of weeds within one week. The long term effect of the concentrate was better than the old RTU formulation's.

Common weeds in a Field Study 2

(Trifolium spp., Amsinckia spp., Poa annua, Erodium cicutarium, Silybium marianum)

Nature's Avenger Organic Herbicide (EPA Reg. No. 82052-1)

Consultant/Applicator:

Name

Marja Koivunen

Affiliation:

Marrone Organic Innovations

Address:

215 Madson Place, Davis, CA 95618

	ort: Marrone Organic Innovatio ort Date: January 31, 2007	% Weed Control Application Date: November 25, 2006						
Treatments		Application Rate (% AI)	7 DAT		30 D	AT	60 MAT	
1	Roundup	2 % glyphosate	55.0	Ъ	100	a	99.5	
2	Nature's Avenger RTU	21.6 %	100	a	100	a	87.75	
3	Nature's Avenger RTU	17.5 %	100	a	100	a	93.5	
4	Nature's Avenger concentrate	11.7 %	100	a	100	a	95.0	
	LSD $(p = 0.05)$		5.4		N.D.		N.S.	

Application rate 180 gpa

Means followed by same letter do not significantly differ (P=.05, Duncan's New MRT)

Conclusions:

Nature's Avenger RTUs and concentrate at 1:5 dilution provided a complete control of all weeds within one week. The herbicidal effect was significantly faster than the one obtained using Roundup (as a control).

Study Report

Efficacy of MOI-001 on controlling weeds

Field Studies 1 and 2

January 25, 2007

Marja Koivunen Marrone Organic Innovations Davis, CA 95618

MOI-001 field study 1

Site: Davis, CA

Soil: clay loam with sand on the top

Major weeds: clover, ryegrass, fiddleneck, redstem filaree, annual bluegrass, blessed milkthistle

at 2-4 leaf-stage

Plot size: one square foot in 4 replicates Trial design: completely randomized block

Spraying: November 24, 2006

GPA: 180

Temperature: 60°F, cool, breezy, sunny Rating: 100=complete control; 0= no control

Day 7after treatment						
Treatment	1	2	3	4	average	
RTU	100	100	97	100	99.25	а
RTU microemulsion	100	100	100	100	100	а
NAO 1:5	100	100	100	100	100	а
control	0	0	0	0	0	b
LSD (p=0.05)						1.1
1 month after treatment						
Treatment	1	2	3	4	average	
RTU	100	100	90	100	97.5	а
RTU microemulsion	100	100	100	100	100	а
NAO 1:5	100	100	100	100	100	а
control	0	0	0	0	0	b
LSD (p=0.05)				•		3.85
2 months after treatment						
Treatment	1	2	3	4	average	
RTU	85	98	80	98	90.25	b
RTU microemulsion	90	97	95	99	95.25	ab
NAO 1:5	98	99	99	99	98.75	а
control	1	1	1	1	. 1	C
LSD (p=0.05)						7.74

RTU - 21.6 % limonene

RTU microemulsion - 17.5 % limonene

NAO - Nature's Avenger Organic Concentrate - 70 % limonene (1:5 = 11.7 %) control - untreated

Conclusions: At time points 1-week and 1-month, all MOI-001 treatments resulted in complete control of all weeds in the treated plots. After 2 months, Nature's Avenger at 1:5 dilution performed significantly better than RTU. The RTU microemulsion was similar to NAO 1:5 and better than the regular RTU, but the difference was not statistically significant at p= 0.05.

MOI-001 field study 2

Site: Davis, CA

Soil: clay loam with sand on the top

Major weeds: clover, ryegrass, fiddleneck, redstem filaree, alfalfa, blessed milkthistle

at 2-4 leaf-stage

Plot size: one square foot in 4 replicates Trial design: completely randomized

block

Spraying: November 25, 2006

GPA: 180

Temperature: 55°F, cool, breezy, cloudy Rating: 100=complete control; 0 = no control

Day 7after treatment							
Treatment	1	2	3	4	average		
RTU	100	100	100	100	100	а	
RTU microemulsion	100	100	100	100	100	a	
NAO 1:5	100	100	100	100	100	a	
Roundup RTU Plus	50	65	[.] 55	50	55	b	
LSD (p=0.05)				·		5.4	
1 month after treatment	t						
Treatment	1	2	3	4	average		
RTU	100	100	100	100	100		
RTU microemulsion	100	100	100	100	100		
NAO 1:5	100	100	100	100	100		
Roundup RTU Plus	100	100	100	100	100		
LSD (p=0.05)						N.D.	not determined
2 months after treatment							
Treatment	1	2	3	4	average		
RTU	96	85	95	75	87.75		
RTU microemulsion	97	95	97	85	93.5		
NAO 1:5	95	98	97	90	95		
Roundup RTU Plus	100	100	99	99	99.5		
LSD (p=0.05)						N.S.	not significant

RTU - 21.6 % limonene

RTU microemulsion - 17.5 % limonene

NAO - Nature's Avenger Organic Concentrate - 70 % limonene (1:5 = 11.7%)

Roundup RTU Plus - 2 % glyphosate

Conclusions:

At the first observation point (7 days after treatment), all MOI-001 treatments performed well with 100 % of all weeds. Roundup as a systemic herbicide did not work as fast as MOI-001 but it resulted in a complete control at the second observation (1 month after treatment). After two months, Roundup out-performed RTU providing the best control. However, it was not statistically different from RTU microemulsion or Nature's Avenger concentrate at 1:5 dilution.

study 1

Anova: Single Factor at 1 week after treatment

SUMMARY

Groups	Count	Sum	Average	Variance
RTU	4	397	99.25	2.25
RTU micro	4	400	100	0
NAO 1:5	4	400	100	0
control	4	0	0	0

ANOVA

rce of Varia	SS	df	MS	F	P-value	F crit
Between G	29851.69	3	9950.563	17689.89	3.91E-22	3.490295
Within Gro	6.75	12				01.700200
Total	29858.44	15				

LSD p=0.05 1.15

Study 1 Anova: Single Factor at 1 month after treatment

SUMMARY

Groups	Count	Sum	Average	Variance
RTU	4	390	97.5	25
RTU microemulsion	4	400	100	0
NAO 1:5	4	400	100	0
control	4	0	0	0

ANOVA

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	29518.75	3	9839.583	1574.333	7.76E-16	3.490295
Within Groups	75	12	6.25			
Total	29593.75	15				

LSD p=0.05 3.85

Study 1 Anova: Single Factor at 2 months after treatment

SUMMARY

Groups	Count	Sum	Average	Variance
RTU	4	361	90.25	84.25
RTU micro	4	381	95.25	14.91667
NAO 1:5	4	395	98.75	0.25
control	4	0	0	0

ANOVA

rce of Varia		df	MS	F	P-value	F crit
Between G	27078.69	3	9026.229	363.1676	4.88E-12	3.490295
Within Gro	298.25		24.85417			
Total	27376.94	15				

LSD p = 0.05 7.74

Study 2 Anova: Single Factor at 1 week after treatment

SUMMARY

Groups	Count	Sum	Average	Variance
RTU	4	400	100	0
RTU microemulsion	4	400	100	0
NAO 1:5	4	400	100	0
Roundup RTU Plus	4	220	55	50

ANOVA

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups Within Groups	6075 150	3 12	2025 12.5	162	5.68E-10	3.490295
Total	6225	15				

LSD p=0.05 5.45

Study 2 Anova: Single Factor

at 1 month after treatment

SUMMARY

Groups	Count	Sum	Average	Variance
RTU	4	400	100	0
RTU microemulsion	4	400	100	0
NAO 1:5	4	400	100	Ō
Roundup RTU Plus	4	400	100	Õ

ANOVA

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups Within Groups	0	3 12	0 0	65535	#NUM!	3.490295
Total	0	15				

No variance

Study 2

Anova: Single Factor at 2 months after treatment

SUMMARY

Groups	Count	Sum	Average	Variance
RTU	4	351	87.75	96.91667
RTU microemulsion	4	374	93.5	33
NAO 1:5	4	380	95	12.66667
Roundup RTU Plus	4	398	99.5	0.333333

ANOVA

Source of Variation	SS	df		F	P-value	F crit		
Between Groups Within Groups	282.1875 428.75	3 12	94.0625 35.72917	2.632653	0.097791			
Total	710.9375	15						

No significant differences

Redstem filaree (Erodium cicutarium)

Nature's Avenger Organic Herbicide (EPA Reg. No. 82052-1)

Consultant/Applicator:

Duane Ewing

Name

Affiliation: Ewing & Associates

Address: 1812 Olvera Drive, Woodland, CA 95776

Repo	Report: Ewing & Associates			*	Weed Control (scale 0-10)	ol (scale 0-1	0)	
Repo	Report Date: January 4, 2007			Applic	Application Date: December 19, 2006	December 1	9, 2006	
	Treatments	Application Rate (% AI)	1 DAT	AT	S D	5 DAT	14I	14 DAT
1	Untreated		0.0	Q.	0.0	þ	0.0	q
2	Nature's Avenger RTU	17.5 %	0.7	.p	2.7	р	0.7	9
3	Nature's Avenger 65 %	16.25 %	2.3	а	5.3	а	5.7	ĸ
4	Nature's Avenger 65 %	9.3 %	0.0	Q	1.3	9	0.7	9
5	Roundup 18.7 %	3 oz/a	0.0	م	1.0	၁	7.7	ष्ठ
	LSD ($p=0.05$)	5)	1.14		606'0		2.803	

Means followed by same letter do not significantly differ (p = 0.05, Student-Newman-Keuls)

Conclusions:

At this level of coverage (60 gpa), inadequate control from application of the concentrate at 1:6 dilution (9.3% limonene) and from the At 1:3 dilution (16.25% limonene) significant control of redstem filaree when compared against the untreated control. ready-to-use (RTU) formulation.

Annual bluegrass (Poa annua)

Nature's Avenger Organic Herbicide (EPA Reg. No. 82052-1)

Consultant/Applicator:

Duane Ewing

Name

Affiliation: Ewing & Associates

Address: 1812 Olvera Drive, Woodland, CA 95776

Repo Repo	Report: Ewing & Associates Report Date: January 4, 2007			W Applie	Weed Control (scale 0-10) Application Date: December 19, 2006	ol (scale 0-1)	0) 9, 2006	
	Treatments	Application Rate (% AI)	1 D	1 DAT	5 D	5 DAT	14 DAT	AT
1	Untreated		0.0	, cd	0.0	o ·	0.0	ပ
2	Nature's Avenger RTU	17.5 %	0.7	a	1.7	-C	1.0	၁
n	Nature's Avenger 65 %	16.25 %	0.7	В	4.7	લ	7.7	þ
4	Nature's Avenger 65 %	9.3 %	0.3	.	1.0	q	0.7	၁
5	Roundup 18.7 %	3 oz/a	0.0	a	1.0	q	7.6	ત્ય
	LSD (p=0.05)	5)	0.909		0.595	:	1.396	

Means followed by same letter do not significantly differ (p = 0.05, Student-Newman-Keuls)

Conclusions:

At this level of coverage (60 gpa), inadequate control from application of the concentrate at 1:6 dilution (9.3% limonene) and from the At 1:3 dilution (16.25% limonene) significant control of annual bluegrass when compared against the untreated control. ready-to-use (RTU) formulation.

Fiddleneck, coast (Amsinckia intermedia)

Nature's Avenger Organic Herbicide (EPA Reg. No. 82052-1)

Consultant/Applicator:

Name Duane Ewing

Affiliation: Ewing & Associates

Address: 1812 Olvera Drive, Woodland, CA 95776

Repo Repo	Report: Ewing & Associates Report Date: January 4, 2007			M App	Weed Control (scale 0-10) Application Date: Dec 19, 2006	ol (scale 0-1 e: Dec 19, 2	0)	
	Treatments	Application Rate (% AI)	a ı	1 DAT	5 DAT	AT	14 I	14 DAT
 (Untreated		0.0	þ	0.0	3	0.0	3
2	Nature's Avenger RTU	17.5 %	1.7	a	1.7	q	0.7	3
3	Nature's Avenger 65 %	16.25 %	1.7	я	4.7	В	8.3	q
4	Nature's Avenger 65 %	9.3 %	1.0	a	1.7	q	7.0	0
5	Roundup 18.7 %	3 oz/a	0.0	q	1.3	q	10.0	ន
	LSD ($p=0.05$)	5)	0.729		0.972		1.002	

Means followed by same letter do not significantly differ (p = 0.05, Student-Newman-Keuls)

Conclusions:

At this level of coverage (60 gpa), inadequate control from application of the concentrate at 1:6 dilution (9.3% limonene) and from the At 1:3 dilution (16.25% limonene) significant control of fiddleneck when compared against the untreated control. ready-to-use (RTU) formulation.

January 4, 2007

Pam Marrone 215 Madison, Suites B/C Davis, CA 95618

Dear Pam:

Nature's Avenger Organic (NAO) Herbicide

Enclosed is the final report for the NAO herbicide trial conducted near Winters, CA, along with supporting data (weather and weed evaluation system) and final invoice. I deliberately kept the ARM report brief and without much commentary; however, I am including comments regarding application, evaluation and overall herbicide performance in this letter. This allows you to make conclusions on a field trial program rather than just one study.

The material mixed well, although the concentrate tends to foam. Coverage was excellent and, at 60 GPA, materials were applied well past the point of runoff. Most plots were a carpet of weeds with redstem filaree the most dominant in terms of surface area. Annual bluegrass and common or coastal fiddleneck were also uniformly present.

Evaluations were made using a Weed Evaluation System as published by the Southern Weed Science Society, is embedded in the ARM report and is also provided separately with the supporting documents. This method allows an easy transposition to percent control; for example, if a treatment mean is 5.8, this equates to 58% control.

On the negative side, the 1:6 dilution of the concentrate did not do much, as you probably expected. Unfortunately, neither did the RTU formulation which I assumed was already them. It appears from this trial that the RTU formulation is not quite ready.

NAO concentrate applied at a 1:3 dilution provided very rapid results, even in the cold weather. Affected weeds appeared water soaked and darkened, much like someone dumped a can of spinach on the plots. Complete control could have been reported except that a significant number of weeds were not affected, as if they were not treated. It looked as if there were "skips" within the spray swath. In fact, if I had not made the application myself and had not looked at the plots afterwards, I would have said it was a poor application.

I can provide further a description of the plots and the application methodology, but I have confidence in the application. The final proof occurred at 14 DAT when Roundup finally showed significant control, and uniform control, throughout the plot areas. The only explanation I have is that some of the weeds were protected by other weeds, therefore not receiving much or any contact with the spray solution. Control ratings will decrease as weeds continue to grow because more of the plot area will be covered.

Call me if there are questions. I assume those with more experience with the product can offer a better interpretation of the results.

Sincerely,

Duane D. Ewing

uano

President

Enclosures (4)

1812 Olvera Drive Woodland, CA 95776

Phone 530.662.8414 Fax 530.662.8685 **Ewing & Associates**

GreenMatch/Nature's Avenger Organic Herbicide (NAO) Efficacy Evaluation

Trial ID: NAOEwing Location: Winters, CA

Protocol ID: NAOMarrone Study Director: Pam Marrone Investigator: Duane Ewing

(Sola	no Co	unty)		Inves	Dire	ctor	Pam	Marrone Ewing	2			
Trt Treatment No. Name 1 Untreated Check	Form Conc	Form	Form Type	Lot	1	Rate	Appl	Spray Volume			Mix	T
2 RTU		%W/W	RTU	1067	As is	L	A				Unit	1
3 NAO Conc. 4 NAO Conc.		%W/W %W/W	C	1074	1:3	VV	A	60	GAL/AC GAL/AC	1	Gal Gal	1
5 Roundup Conc. Plus		%W/W	EC	1074		V/V oz/G	A		GAL/AC GAL/AC		Gal	ļ
	<u> </u>			<u> </u>			Ľ <u>. </u>		GALAC	_ 1	Gal	ľ

Replications: 3, Design: Randomized Complete Block, Treatment units: US standard, Treated plot size Width: 5 feet, Treated plot size Length: 15 feet, Application volume: 60 gal/ac, Mix size: 1 Gal, Format definitions: G-Ali7.DEF, G-Ali7.FRM

Ewing & Associates

GreenMatch/Nature's Avenger Organic Herbicide (NAO) Efficacy Evaluation

Trial ID: NAOEwing

Protocol ID: NAOMarrone Study Director: Pam Marrone

Location: Winters, CA (Solano County)

Investigator: Duane Ewing

Study Director: Pam Marrone

Title: CEO

Affiliation: Marrone Organic Innovations

Duane D. Ewing

Investigator: Affiliation:

Ewing & Associates

Title: President

City:

Winters

Trial Location

General Trial Information

Completed

State/Prov.: CA

Trial Status: Trial Reliability:

High

19-Dec-06

Country:

USA

Initiation Date: Completion Date:

2-Jan-07

Evaluate two formulations of Nature's Avenger Organic Herbicide against three weed species.

Conclusions:

The concentrate formulation of Nature's Avenger Organic Herbicide provided significant control of all three weed species tested when compared against the untreated check when applied at a 1:3 dilution. Inadequate weed control resulted from the application of the concentrate at a 1:6 dilution and from the ready to use

Cooperator/Landowner

Cooperator: Peter Hunter Organization: Hunter Farms City:

State/Prov:

Winters CA

Crop Description

Grop 1: YNKKX Non-crop land

Non-crop land

Pest Description Pest 1 Type: W

Code: EROCI Erodium cicutarium Common Name: Redstem filaree

Pest 2 Type: W Code: POAAN Poa annua Common Nama: Annual bluegrass

Pest 3 Type: W Code: AMSIN Amsinckia intermedia

Common Name: Fiddleneck, coast

Site and Design

Plot Width, Unit: 5 Plot Length, Unit: 15 FT

FT Site Type:

Non-Crop Area

Replications:

Tillage Type: NO-TILL

Study Design: Randomized Complete Block

Application Description					
A = 12 = 41 = 1	Α				
Application Date:	19-Dec-06				
Time of Day:	2 PM				
Application Method:	SPRAY				
Application Timing:	NCPOPE				
Application Placement:	BROFOL				
Air Temperature, Unit:					
% Relative Humidity:	47.9 F				
Wind Velocity, Unit:	42				
Wind Direction:	0.8 MPH				
Dew Presence (Y/N):	S				
Soil Moisture:	N				
Olevila	Moist				
% Cloud Cover:	5				

Crop Stage At Each Application

Crop 1 Code, BBCH Scale:

YNKK
X

Pest Stage A	t Each Application
,	A
Pest 1 Code, Disc., Scale:	EROCI W
Stage Majority, Percent:	4-6Lf
Diameter, Unit:	2 IN
Height, Unit:	4 IN
Pest 2 Code, Disc., Scale:	POAAN W
Stage Majority, Percent:	Tiller
Diameter, Unit:	.5 IN
Height, Unit:	1 IN
Pest 3 Code, Disc., Scale:	AMSIN W
Stage Majority, Percent:	6-8Lf
Diameter, Unit:	2 IN
Height, Unit:	1 IN

Application Equipment

A
Appl. Equipment:

Operating Pressure, Unit:

Nozzle Type:

Nozzle Spacing, Unit:

Nozzles/Pass:

No. Passes/Plot

Boom Height, Unit:

Ground Speed, Unit:

Spray Volume, Unit:

Mix Size, Unit:

AlR

Tank Mix (Y/N):

Roundup Professional
Hand Sprayer

MAX

MAX

MAX

Is IN

Is IN

Is IN

Is IN

Is IN

Ground Speed, Unit:

Is IN

GAL

AlR

Tank Mix (Y/N):

N

Ewing & Associates

GreenMatch/Nature's Avenger Organic Herbicide (NAO) Efficacy Evaluation

Trial ID: NAOEwing Location: Winters, CA (Solano County)

Protocol ID: NAOMarrone Study Director: Pam Marrone Investigator: Duane Ewing

Rep	Bík					
1	1 Plot	3 101	102	5 103	4 104	2
2	2 Plot	4 201	5 202	1 203	2	105 3
3	3 Plot	2 301	3 302	4 303	204 5 304	205 1 305

Weed Evaluation System 0 - 10 Scale

	Rating escription	Description of Main Detailed Categories
0	No Effect	No weed control
1		Very poor weed control
2	Slight Effect	Poor weed control
3		Poor to deficient weed
4		Control Deficient weed control
5	Moderate Effect	Deficient to moderate weed control
6		Moderate weed control
7		Weed control somewhat less than satisfactory
8	Severe Effect	Satisfactory to good weed control
9		Very good to excellent weed control
10	Complete Effect	Complete weed destruction

(NAOEwing)

Ewing & Associates GreenMatch/Nature's Avenger Organic Herbicide (NAO) Efficacy Evaluation

Trial ID: NAOEwing Location: Winters, CA (Solano County)

Protocol ID: NAOMarrone Study Director: Pam Marrone Investigator: Duane Ewing

(So	lano County)		cady D	rector: Pam	Marrone				
Lest TAbe	- Country	1	nvesti	gator: Duane	Ewing				
Pest Code				W Weed	W Weed	W Weed	142 154		
Pest Name				EROCI	POAAN	AMSIN		W Weed	W We
Crop Code				Redstem fil>	Annual blue>	Coast fiddl>	-17001	POAAN	AMS
Crop Name				YNKKX	YNKKX	YNKKX	Redstem fil>	Annual blue>	Coast fide
Part Rated				Non-crop la>	Non-crop la>	Non-crop la>	YNKKX	YNKKX	YNK
Rating Date				PLANT P	PIANT D	PLANT P	Non-crop (a>	Non-crop la>	Non-crop I
Rating Data Type				19-Dec-06	19-Dec-06	10 Doc 00	PLANT P	PLANT P	PLANT
Rating Unit				CONTRO	CONTRO	19-Dec-06	20-Dec-06	20-Dec-06	20-Dec-
Assessed Bv				0-10Scal	0-10Scal	CONTRO	CONTRO	CONTRO	CONTR
Days After First/Last A	polic			Ewing D.	Ewing D.	0-10Scal	0-10Scal	0-10Scal	0-10Sc
III-Evai intervai	ppac.			0 0	0 0	Ewing D.	Ewing D.	Ewing D.	Gridge
ARM Action Codes				0 DA-A	0 DA-A	0 0	1 1	1 1	Ewing !
Trt Treatment	Form Form			D05	D05	0 DA-A	1 DA-A	1 DA-A	104
Vo. Name		Rate	Appl			D05	D05	D05	1 DA-
1 Untreated Check	Conc Unit	Rate Unit	Code	1 1	2				DC
2 RTU	47 5 6/10/15			0.00 a	0.00 a	3	4	5	
3 NAO	17.5 %W/W	As is	Α	0.00 a		0.00 a	0.00 b	0.00 a	6
4 NAO	65 %W/W	1:3 V/V	Α	0.00 a	0.00 a	0.00 a	0.67 b	0.67 a	0.00 b
	65 %W/W	1:6 V/V	A	0.00 a	0.00 a	0.00 a	2.33 a	0.67 a	1.67 s
5 Roundup Conc. + SD (P=.05)	18.7 %W/W	3 oz/a	A	0.00 a	0.00 a	0.00 a	0.00 b	0.33 a	1.67 a
5D (P=.05)	·· ·				0.00 a	0.00 a	0.00 b		1.00 a
tandard Deviation			1	0.000	0.000	0.000	1,140	0.00 a	0.00 b
				0.000	0.000	0.000	0.606	0.909	0.729
rand Mean			[0.0	0.0	0.0	100.92	0.483	0.387
artlett's X2			i	0.0	0.0	0.0	0.6	144.91	44.69
(Bartlett's X2)			- 1	0.0	0.0	0.0	0.85	0.33	0.87
riedman's X2			- 1	انہ	.1		0.357	0.0	0.0
(Friedman's X2)			1	0.0	0.0	0.0	5.667	0.001*	1.00
				1.00	1.00	1.00		3.333	9.8
eplicate F			- 1		j		0.225	0.504	0.044
Pplicate Prob(F)				0.000	0.000	0.000	0.545		- • •
eatment F			- 1	1.0000	1.0000	1.0000	0.545	0.286	0.444
eatment Prob(F)			- 1	0.000	0.000	0.000	0.5997	0.7588	0.6561
				1.0000	1.0000	1.0000	8.364	1.429	14.000
ans followed by same l	letter de not -:						0.0059	0.3088	0.0011

				1.0000	1.0000	1.0000	0.0059	1	
Means followed by sa Mean comparisons pe	me letter do not	significantly.	-1166 (D				0.0059	0.3088	0.00
Mean comparisons per Pest Type	and only wh	ognincangy	amer (P	= 05, Student-Ne	wman-Keuls)				
Pest Type	The desired only was	en MOV Tre	atment F	(r) is significant	at mean compa	Irison OSI			
is car odde				1 11 14000	ו אס עע או	W Weed		·	
Pest Name				EROCI	POAAN		W Weed	W Weed	W We
Crop Code				Redstem fil>	Annual blue>		EROCI	POAAN	AMS
Crop Name				YNKKX	YNKKX	Coast fiddl>	Redstem fil>	Annual blue>	Coast fidd
Part Rated				Non-crop la>	Non-crop la>	YNKKX	YNKKX	YNKKX	YNK
Rating Date				PLANT P	PLANT P	Non-crop la>	Non-crop la>	Non-crop la>	Non-crop k
Rating Data Type				22-Dec-06	22-Dec-06	PLANT P	PLANT P	PLANT P	DIANT
Rating Unit				CONTRO	22-U8C-U6	22-Dec-06	24-Dec-06	24-Dec-06	PLANT
Assessed By				0-10Scal	CONTRO	CONTRO	CONTRO	CONTRO	24-Dec-(
Dave Affer Clare				Ewing D.	0-10Scal	0-10Scal	0-10Scal	0-10Scat	CONTR
Days After First/Last A Irt-Eval Interval	pplic.			3 3	Ewing D.	Ewing D.	Ewing D.	Ewing D.	0-10Sc
NOM Astis O				3 DA-A	3 3	3 3	5 5		Ewing (
RM Action Codes					3 DA-A	3 DA-A	5 DA-A	5 5	5
rt Treatment	Form Form	Rate	Appl	D05	D05	D05	D05	5 DA-A	5 DA-
lo. Name	Conc Unit	Rate Unit	Code	- 1				D05	D0
1 Untreated Check		J. J. J.	Code	7	8	9	10	44	
2 RTU	17.5 %W/W	As is	A	0.00 c	0.00 b	0.00 d	0.00 d	11	12
3 NAO	65 %W/W	1:3 V/V		1.33 b	1.00 b	1.67 b		0.00 c	0.00 c
4 NAO	65 %W/W		A	3.33 a	3.33 a	3.00 a	2.67 b	1.67 b	1.67 b
5 Roundup Conc. +	18.7 %W/W		A	0.67 bc	1.00 b	1.00 bc	5.33 a	4.67 a	4.67 a
SD (P=.05)	10.1 7044744	3 oz/a	A	0.00 c	0.00 b		1.33 c	1.00 b	1.67 b
landard Deviation			Ţ	0.909	0.876	0.33 cd	1.00 c	1.00 b	1.33 b
V			į	0.483	0.465	0.769	0.909	0.595	0.97
and Mean			ľ	45.29	43.64	0.408	0.483	0.316	0.516
rtlett's X2			1	1.07	1.07	34.02	23.37	18.97	
Bartlett's X2)			- 1	0.0	0.548	1.2	2.07	1.67	27.66
edman's X2			1	1.00		0.0	0.0	0.0	1.87
Friedman's X2)			-[9.6	0.459	1.00	1.00	1.00	0.0
mesmana AZ)				0.048	9.4	9.867	11.467	10.4	1.00
plicate F]	0.040	0.052	0.043	0.022	0.034	9.8
plicate Prob(F)			- 1	0.286	0.454			0.034	0.044
eatment F			- 1	0.7588	2.154	0.000	0.286	2.667	4
			- 1	24.571	0.1785	1.0000	0.7588	0.1296	1.000
atment Prob(F)			1		25.692	25.600	54.571		0.4096
				0.0002	0.0001	0.0001	0.0001	95.000	32.875
							0.0001	0.0001	0.0001

Means followed by same letter do not significantly differ (P=.05, Student-Newman-Keuls) Mean comparisons performed only when AOV Treatment P(F) is significant at mean comparison OSL Pest Code W Weed W Weed W Weed **EROCI** Pest Name POAAN AMSIN Redstern fil> Annual blue> Crop Code Coast fiddl> **YNKKX** Crop Name **YNKKX YNKKX** Non-crop la> Part Rated Non-crop la> Non-crop la> PLANT P Rating Date PLANT P PLANT P 2-Jan-07 Rating Data Type 2-Jan-07 2-Jan-07 CONTRO Rating Unit CONTRO CONTRO 0-10Scal Assessed By 0-10Scal 0-10Scal Days After First/Last Applic. Ewing D. Ewing D. Ewing D. Trt-Eval Interval 14 14 14 14 14 14 14 DA-A **ARM Action Codes** 14 DA-A 14 DA-A Trt Treatment D05 D05 Form Form D05 Rate Appl No. Name Conc Unit Rate Unit Code 1 Untreated Check 13 14 15 0.00 b 2 RTU 0.00 c 0.00 c 17.5 %W/W As is 1.00 c 0.67 b 3 NAO 65 %W/W 0.67 c 1:3 V/V A 4 NAO 5.67 a 7.67 b 65 %W/W 8.33 b 1:6 V/V Α 0.67 b 5 Roundup Conc. + 0.67 c

0.67 c

1.002

0.532

13.53

3.93

1.273

0.529

10.067

0.039

3.059

0.1031

246.118

10.00 a

0.0001 Means followed by same letter do not significantly differ (P=.05, Student-Newman-Keuls) Mean comparisons performed only when AOV Treatment P(F) is significant at mean comparison OSL.

3 oz/a A

7.67 a

2.803

1.489

50.76

2.93

3.674

0.299

9.533

0.049

0.211

0.8145

16.496

0.0006

9.67 a

1.396

0.742

19.52

1.518

0.468

10.667

0.031

3.273

0.0915

111.091

0.0001

3.8

18.7 %W/W

LSD (P=.05)

Grand Mean

Bartlett's X2

P(Bartlett's X2)

Friedman's X2

Replicate F

Treatment F

P(Friedman's X2)

Replicate Prob(F)

Treatment Prob(F)

CV

Standard Deviation

Ewing & Associates

GreenMatch/Nature's Avenger Organic Herbicide (NAO) Efficacy Evaluation

Trial ID: NAOEwing Location: Winters, CA (Solano County)

Protocol ID: NAOMarrone Study Director: Pam Marrone Investigator: Duane Ewing

Pest Type											
Pest Code					WW		Veed W W	eed M M			
Pest Name						OCI PO	AAN AM	eed W We SIN ERO			d
Crop Code					Redstem		lue> Coast fire	idi> Redstem f		^{an}) amsii	N
Crop Name					YNK		KKX YNI	KX YNK		- vade naun	
Part Rated Rating Date					Non-crop PLANT		ia> Non-crop	la> Non-crop la	<x td="" ynki<=""><td></td><td>K</td></x>		K
Rating Data Type					19-Dec		", "	TPI PLANT	P PLANT		*
Rating Unit					CONTI			≻06 20-Dec-(06 20-Dec		3
Assessed By					0-108	CONT Cal 0-10			O CONTR	06 20-Dec-06	3
Days After First/Las	st Applic				Ewing		Scal 0-108 g D. Ewing		al 0-10Sc	81 0-109ca	1
IIII-Eval Interval					0	0 0				D. Ewing D.	1
ARM Action Codes					0 DA	- T			1 1	11 1 1	1
Trt Treatment	Form Form	F	Rate /	Anal .	D	05		05 00		-A 1 DA-A	4
No. Name	Conc Unit	Rate L	Init (lot 1				DC	D05	4
1 Untreated Che	ck					00 0	3	4	5	_ 6	l
					aal ""			0.0	0.0	0.00	ł
}				3	05 0.0	III •		0.0	이 0.0		
Ĺ					ĺ		.00	0.0	0.0		
2 RTU	17.5 %W/W	As is		Mean			.იი ი.	00 0		j j	
į	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	A 19	Α	• • •	0.0	0.	00 0.			V.VVI	į
				20 30	0.0	0.	00 0.0	0.00		2.00	
				3(0.0	/U 0.	00 0.0				
3 NAO				Mean	=0.0	- 10			1.0	2.00	
S NAC	65 %W/W	1:3 V/	VA	10			00 0.0		0.67	ا ـ ما	
				20		-1	0.0 00 0.0	2.00	1.00		
				30		_I ~,.			1.00		
_					ł	0.,	0.0	2.00	0.00	2.00	
4 NAO	65 %W/W	1:6 V/	7 - 4	Mean			0.0	n	_	∤ 1	
	00 /01///	1.0 0/	/ A	10	.,	0.0				+ <u>'</u> ''	
				20 ⁻ 30:			0.0		0.00		
				50.	3∫ 0 .00	0.0	0.0		0.00 1.00	1.00	
5 Roundup Conc. Plu	48 = 40			Mean =	0.00	1			1.00	1.00	
- Mountaby Conc. Pill	s 18.7 %W/W	3 oz/	a A	103				-1	0.33	1.00	
				202	0.00		_1	0.00	0.00	0.00	
				304	0.00			0.00	0.00	0.00	
				Ma	1	1	-	0.00	0.00	0.00	
est Type		······		Mean =				0.00	0.00		
est Code					W Weed EROCI		W Weed	W Weed	0.00 W Weed	0.00	
est Name op Code				1				EROCI	POAAN	W Weed	
op Code op Name					YNKKX	Annual blue: YNKK		Redstem fil>	Annual blue>	AMSIN Coast fiddi>	
rt Rated					Non-crop la>	Non-crop ia>		YNKKX	YNKKX	YNKKX	
iting Date				ļ	PLANT P	PLANT P	Non-crop la>		Non-crop ia>	Non-crop la>	
ting Data Type				ı	22-Dec-06	22-Dec-06	22-Dec-06	PLANT P	PLANT P	PLANT P	
ting Unit				}	CONTRO	CONTRO	CONTRO	24-Dec-06 CONTRO	24-Dec-06	24-Dec-06	
sessed By				ı	0-10Scal	0-10Scal	0-10Scal	0-10Scal	CONTRO	CONTRO	
ys After First/Last Ap	plic.			1	Ewing D.	Ewing D.	Ewing D.	Ewing D.	0-10Scal Ewing D.	0-10Scal	
Eval Interval M Action Codes				ļ	3 3 3 DA-A	3 3	3 3	5 5	5 5	Ewing D.	
Treatment			_	- 1	D05	3 DA-A		5 DA-A	5 DA-A	5 5 5 DA A	
Name	Form Form	Rate	Appl		203	D05	D05	D05	D05	5 DA-A D05	
Untreated Check	Conc Unit F	Rate Unit	Code	Plot	7	8				200	
				102	0.00	0.00	9 0.00	10	11	12	
				203	0.00	0.00	0.00 0.00	0.00	0.00	0.00	
				305	0.00	0.00	0.00	0.00	0.00	0.00	
	_		g. 4	laan _		-7	0.00	0.00	0.00	0.00	
	17.5 %W/W A	s is	A IV	lean = 105				1	1	1	
RTU	ALICA SALESSA		• 1		2.00	1.00	2.00	3.00	0.00		
RTU				2041	لمميد						
RTU				204 301	1.00	1.00	2.00		2.00	2.00	
RTU	1014144 h			301	1.00 1.00	1.00		3.00 2.00	2.00	2.00	
			M	301 ean =	1.00		2.00	3.00			
		1:3 V/V	M.	301 ean =	1.00 1.00	1.00	2.00 1.00	3.00 2.00	2.00 1.00	2.00	
			M.	301 ean = 101 205	3.00 4.00	3.00	2.00 1.00	3.00 2.00 5.00	2.00 1.00 5.00	2.00 1.00	
RTU NAO			M.	301 ean =	3.00	1.00	2.00 1.00	3.00 2.00	2.00 1.00	2.00	

4 NAO	65 %W/M	4.61	11.		Mean =		1.	ļ
	05 7044/4/	V 1:6 V	/V	A	104	., 0.00	0.00	1.00
					201	1 1.00	2.00	1.01
					303	1.00	1.00	1.01
						} .		1.00
5 Roundup Conc. Plu	s 18.7 %W/W	/ 3 oz	7/2	A	lean = 103			<u>L</u>
		0.00	-u ,	^	202	0.00	0.00	
					304	0.00	0.00	
					504	0.00	0.00	1.00
Pest Type				N	lean =		ļ	
Pest Code						W Weed	W Weed	W Weed
Pest Name					i	EROCI	POAAN	
Crop Code					- 1	Redstern fil>	Annual blue>	AMSIN Coast fiddi>
Crop Name						YNKKX	YNKKX	YNKKX
Part Rated					ŀ	Non-crop la>	Non-crop la>	Non-crop ia>
Rating Date					1	PLANT P	PLANT P	PLANT P
Rating Data Type					- 1	2-Jan-07	2-Jan-07	2-Jan-07
Rating Unit					ľ	CONTRO	CONTRO	CONTRO
Ssessed By					į	0-10Scal	0-10Scal	0-10Scal
ays After First/Last A	ppiic.				ŀ	Ewing D.	Ewing D.	Ewing D.
π-Evai Interval	-,				1	14 14	14 14	14 14
RM Action Codes						14 DA-A	14 DA-A	14 DA-A
rt Treatment	Form Form	Ref	te A	nni		D05	D05	D05
lo. Name	Conc Unit	Rate Uni	i C	oqe Phi	Plot	42		
1 Untreated Check				-46	102	13 0.00	14	15
					203	0.00	0.00	0.00
					305	0.00	0.00	0.00
						0.00	0.00	0.00
2 RTU	17.5 %W/W			Me	an =	_ 1		1
	17.5 %VV/VV	As is	A		105	1.00	1.00	1.00
					204	1.00	1.00	1.00
					301	0.00	1.00	0.00
						ľ		0.00
3 NAO	65 %W/W	1:3 V/V	Ā	IVIE	an =			
		77	М		101 205	6.00	9.00	9.00
					302	3.00	6.00	8.00
					502	8.00	8.00	8.00
4 NAO	A - A			Mea	n =	1	i i	[
TIMO	65 %W/W	1:6 V/V	A		104	2.00	2.00	
					201	0.00	2.00	2.00
					303	0.00	0.00	0.00
						0.00	0.00	0.00
5 Roundup Conc. Plus	18.7 %W/W			Mea			ł	1
	10.7 7049/44	3 oz/a	Α		03	7.00	10.00	10.00
					202	9.00	9.00	10.00
				3	304	7.00	10.00	10.00
					- 1	ĺ	1	. 5.00
				Mear	n⇒ľ	1		

1.00 2.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 2.00 2.00 1.00

1.00 1.00 2.00

Supplemental Data

- 1. Weather Data
- 2. Weed Evaluation System

Weed Evaluation System 0 – 10 Scale

Rating	Description of Main Detailed Categories	Description				
	No Effect	No weed control				
1		Very poor weed control				
2	Slight Effect	Poor weed control				
3 4		Poor to deficient weed control				
4		Deficient weed control				
5	Moderate Effect	Deficient to moderate weed control				
0		Moderate weed control				
7		Weed control somewhat less than satisfactory				
8	Severe Effect	Satisfactory to good weed control				
9		Very good to excellent				
10	Complete Effect	weed control Complete weed destruction				

Daily Report

California Irrigation Management Information System
Department of Water Resources
Office of Water Use Efficiency
Rendered in ENGLISH units
December 19, 2006 - January 2, 2007
Printed on January 3, 2007

Sacramento Valley - Winters - 139

Date	CIMIS ETo (in)	Precip (in)	Sol Rad (Ly/day)	Avg Vap (mBars)	Max Air Temp ("F)	Min Air Temp	Avg Air Temp	Max Rei Hum (%)	Min Rei Hum (%)	Avg Rei Hum (%)	Dew Pt	Avg	Wnd Run	Avg Soi
12/19/06	N	0.00	216	4.8		(°F)	(°F)			110111 (76)	(°F)	wSpd (MPH)	(miles)	Temp (°F)
12/20/06	N	0.00	167		50.7	23.8	36.3	87	34	66	25.9	2.4	58.3	47.7
2/21/06	N			6.0	50.8	26.6	38.5	95	53	76	31.6	2.3	56.7	
2/22/06		0.65	23	8.1	43.1	40.2	41.5	99	79	91	39.0		 	46.9
2/23/06	N	0,00	324	6.8	58.0	37.2	45.4	93	35	66		2.6	61,7	47.4
	N	0.00	144	7.5	50.6	29.6	39.9	100			34.8	4.1	98.4	47.8
2/24/06	и	0.00	127	8.2	50.7	33.2	41.0		72	90	37.2	2.3	54.3	47.5
2/25/06	N	0.00	62	9.2	46.2			100	73	94	39.3	2.0	49.2	47.4
2/26/06	N	0.50	42	10.9		36.8	42.0	100	95	100	42.2	1.8	42.7	47,7
2/27/06	N	0.00			56.1	41.3	49.4	100	70	91	46.8	5.0	119.9	
2/28/06	+		199	6.4	60.4	45.5	52.2	76	29	48	33,2	9.7		48.3
2/29/06	N	0.00	228	3.5	56.3	43.6	49.0	37	22	30			234.6	49.3
	N	0.00	186	4.9	52,7	28.5	40.9	92	29		18.6	8.8	213.4	48.3
1/30/06	N	0.00	213	6.3	53.4	27.3	38.4	 -		56	26.5	3.2	76.9	47.4
/31/06	N	0.00	186	7.4	55.6	32.4		98	53	80	32.9	2.6	63.6	46.3
t/Avge		1.15	155	6.9	52.7		42.0	98	56	81	36.8	2.2	53.2	46.6
					74.1	34.3	42.8	90	54	75	34.2	3.8	91.0	47.6

Sacramento Valley - Winters - 139

Date	CIMIS		T .											
	ETo (in)	Precip (In)	So! Rad (Ly/day)	Avg Vap (m8ars)	Max Air Temp (°F)	Min Air Temp (°F)	Avg Air Temp	Max Rel Hum (%)	Min Rei Hum (%)	Avg Rei Hum (%)	Dew Pt (°F)	Avg	Wnd Run	Avg Soil
01/01/07	N	0.00	219	6.1	67.6	31.8	(°F)				(1)	w8pd (MPH)	(miles)	Temp (°F)
01/02/07	N	0.00	137	7.6	52.3		51.9	96	24	46	32.0	4.5	109,2	46.8
Tot/Avgs		0.00	178		-	33.6 32.7	41.0	100	69	89	37.6	2.0	48.5	47.0
·		-			33.3	32.7	46.5	98	47	67	34.8	3.3	78.9	

Flag Legend

	, ing rafiells	
A - Historical Average	l towns	T — — — — — — — — — — — — — — — — — — —
C or N - Not Collected	i - Ignore	R - Far out of Normal Range
H - Hourly Missing or Flagged	M - Missing Data	S - Not in Service
the string of Flagged	Q - Related Sensor Missing	Y - Moderately Out of Range
		Industrately Out of Range

Conversion Table

· · · · · · · · · · · · · · · · · · ·	1011 14016
W/sq.m = Ly/day / 2.065	inches * 25.4 = mm

Daily Report

Conver	ion Table
C = 5/9 * (F - 32)	m/s = mph * 0.447
kPa = m	Bars * 0.1

Weed Evaluation System 0 – 10 Scale

Rating 0	Description of Main Detailed Categories	Description		
	No Effect	No weed control		
2		Very poor weed control		
	Slight Effect	Poor weed control		
3 4		Poor to deficient weed control		
7		Deficient weed control		
5	Moderate Effect	Deficient to moderate weed control		
		Moderate weed control		
7		Weed control somewhat less than satisfactory		
8	Severe Effect	Satisfactory to good		
9		Weed control Very good to excellent		
10	Complete Effect	weed control Complete weed		
		destruction		

1. Annual Bluegrass (Poa annua)

Nature's Avenger Organic Herbicide (EPA Reg. No. 82052-1)

Consultant/Applicator:

Daniel Forey

Bio Research

1738 N. Fowler Ave. Fresno, CA 93727

_	Report: Bio Study No. 325-06 Report Date: January 17, 2007			Percent Control Application Date: December 28, 2006							
	Treatments Application Rate (% AI		1 DAT		8 DAT		15 DAT				
1	Untreated	0	0.0	С	0.0	đ	0.0	Ъ			
2	Nature's Avenger RTU	17.5%	26.3	ab	61.3	ab	60.0	a			
3	Nature's Avenger Concentrate	17.5%	28.8	a	68.8	a	56.3	a			
4	Nature's Avenger Concentrate	10.0%	30.0	а	47.5	bc	45.0	а			
5	Roundup (glyphosate)	4 qt/A	21.3	b	32.5	С	40.0	a			
	LSD(P = .05)	6.63		18.70		19.67					

Means followed by same letter do not significantly differ (P=.05, Duncan's New MRT)

Conclusion: All Nature's Avenger treatments had a significant effect on controlling *Poa annua*. After 15 days, the % weed control with Nature's Avenger RTU was the highest (60 %) but the product did not perform significantly better than the two dilutions of the concentrate or Roundup.

2. California burclover (Medigaco polymorpha)

Nature's Avenger Organic Herbicide (EPA Reg. No. 82052-1)

Consultant/Applicator:

Daniel Forey Bio Research

1738 N. Fowler Ave. Fresno, CA 93727

_	Report: Bio Study No. 325-06 Report Date: January 17, 2007			Percent Control Application Date: December 28, 2006							
		Application Rate (% AI)	1 DAT		8 DAT		15 DAT				
1	Untreated	0	0.0	С	0.0	đ	0.0	b			
2	Nature's Avenger RTU	17.5%	50.0	а	88.3	a	65.0	a			
3	Nature's Avenger Concentrate	17.5%	50.0	a	87.7	a	73.3	а			
4	Nature's Avenger Concentrate	10.0%	30.0	b	57.5	b	60.0	a			
5	Roundup (glyphosate)	4 qt/A	21.7	c .	15.0	С	66.7	a			
	LSD ($P = .05$	5)	7.	66	14	.64	27.	.62			

Means followed by same letter do not significantly differ (P=.05, Duncan's New MRT)

Conclusion: Nature's Avenger is a fast-acting burndown herbicide. One day after the treatment, products with the highest limonene concentration controlled 50 % of *Medigaco polymorpha*. All Nature's Avenger treatments had a significant herbicidal effect. After 1 5 days, the % weed control with 1:3 dilution of Nature's Avenger concentrate was the highest (73.3%) but the difference to other treatments was not statistically significant.

3. Common Chickweed (Stellaria media)

Nature's Avenger Organic Herbicide (EPA Reg. No. 82052-1)

Consultant/Applicator:

Daniel Forey

Bio Research

1738 N. Fowler Ave. Fresno, CA 93727

	ort: Bio Study No. 325-06 ort Date: January 17, 2007		Percent Control Application Date: December 28, 2006							
	Treatments Application Rate (% AI)		1 DAT		8 D	8 DAT)AT		
1	Untreated	0	0.0	b	0.0	c	0.0	С		
2	Nature's Avenger RTU	17.5%	46.7	a	60.8	a	71.3	a		
3	Nature's Avenger Concentrate	17.5%	41.7	a	48.3	ab	76.7	a		
4	Nature's Avenger Concentrate	10.0%	37.5	a	43.8	abc	71.3	a		
5	Roundup (glyphosate)	4 qt/A	11.7	ь	10.0	bc	43.3	b		
	LSD (P = .03)	5)	22.00		42	42.74		.81		

Means followed by same letter do not significantly differ (P=.05, Duncan's New MRT)

Conclusions: All Nature's Avenger treatments outperformed Roundup in controlling Stellaria media.

4. Mouseeared chickweed (Cerastum vulgatum)

Nature's Avenger Organic Herbicide (EPA Reg. No. 82052-1)

Consultant/Applicator:

Daniel Forey

Bio Research

1738 N. Fowler Ave. Fresno, CA 93727

_	Report: Bio Study No. 325-06 Report Date: January 17, 2007			Percent Control Application Date: December 28, 2006							
Treatments Application Rate (% AI)		1 DAT		8 DAT		15 DAT					
1	Untreated	0	0.0	c	0.0	c	0.0	c			
2	Nature's Avenger RTU	17.5%	57.5	a	98.0	a	95.0	a			
3	Nature's Avenger Concentrate	17.5%	72.5	a	98.0	a	94.5	a			
4	Nature's Avenger Concentrate	10.0%	60.0	b	97.0	а	88.8	а			
5	Roundup (glyphosate)	4 qt/A	23.3	b	12.5	b	40.0	b			
	LSD (P = .05)		17.24		2.05		8.73				

Means followed by same letter do not significantly differ (P=.05, Duncan's New MRT)

Conclusions: After one week, all Nature's Avenger treatments resulted in almost 100 % control of Cerastum vulgatum.

5. Redstem filaree (Erodium cicutarium)

Nature's Avenger Organic Herbicide (EPA Reg. No. 82052-1)

Consultant/Applicator:

Daniel Forey

Bio Research

1738 N. Fowler Ave. Fresno, CA 93727

	Report: Bio Study No. 325-06 Report Date: January 17, 2007			Percent Control Application Date: December 28, 2006						
Treatments Application Rate (% AI)			1 DAT		8 DAT		15 DAT			
1	Untreated	0	0.0	b	0.0	b	0.0	ь		
2	Nature's Avenger RTU	17.5%	21.3	a	53.3	a	43.8	a		
3	Nature's Avenger Concentrate	17.5%	23.3	a	46.7	a	41.7	a		
4	Nature's Avenger Concentrate	10.0%	25.0	a	33.3	a	41.7	a		
5	Roundup (glyphosate)	4 qt/A	25.0	ь	35.0	a	55.0	a		
	LSD (P = .05)			7.41		30.43		.17		

Means followed by same letter do not significantly differ (P=.05, Duncan's New MRT)

Conclusions: The control of *Erodium cicutarium* was similar (40-50%) with all the products tested in this study.

6. Shepherdspurse (Capsella bursa-pastoris)

Nature's Avenger Organic Herbicide (EPA Reg. No. 82052-1)

Consultant/Applicator:

Daniel Forey

Bio Research

1738 N. Fowler Ave. Fresno, CA 93727

	Leport: Bio Study No. 325-06 Leport Date: January 17, 2007			Percent Control Application Date: December 28, 2006						
Treatments		Application Rate (% AI)	1 DAT		8 D	8 DAT		DAT		
1	Untreated	0	0.0	С	0.0	c	0.0	b		
2	Nature's Avenger RTU	17.5%	81.3	a	83.5	a	96.5	a		
3	Nature's Avenger Concentrate	17.5%	90.0	a	98.0	a	97.3	a		
4	Nature's Avenger Concentrate	10.0%	72.5	а	97.3	a	97.3	a		
5	Roundup (glyphosate)	4 qt/A	38.8	b	51.7	b	90.3	а		
	LSD $(P = .03)$	5)	18.81		24.90		9.82			

Means followed by same letter do not significantly differ (P=.05, Duncan's New MRT)

Conclusions: All Nature's Avenger treatments provided fast and effective control of *Capsella bursa-pastoris*. After 15 days, the effect was comparable to Roundup's.

7. Common lambsquarters (Chenopodium album)

Nature's Avenger Organic Herbicide (EPA Reg. No. 82052-1)

Consultant/Applicator:

Daniel Forey

Bio Research

1738 N. Fowler Ave. Fresno, CA 93727

-	Report: Bio Study No. 325-06 Report Date: January 17, 2007			Percent Control Application Date: December 28, 2006							
	Treatments Application Rate (% AI)		1 DAT		8 DAT		15 DAT				
1	Untreated	0	0.0	đ	0.0	c	0.0	đ			
2	Nature's Avenger RTU	17.5%	60.0	a	98.0	а	83.5	ь			
3	Nature's Avenger Concentrate	17.5%	63.8	a	98.0	a	97.8	а			
4	Nature's Avenger Concentrate	10.0%	50.0	ь	87.5	a	98.3	а			
5	Roundup (glyphosate)	4 qt/A	30.0	С	41.7	Ъ	50.0	С			
	LSD $(P = .05)$	5)	8.51		18.54		10.55				

Means followed by same letter do not significantly differ (P=.05, Duncan's New MRT)

Conclusions: All Nature's Avenger treatments outperformed Roundup in controlling *Chenopodium album*. Both dilutions of the concentrate performed better than the RTU formulation.

8. Common groundsel (Senecio vulgaris)

Nature's Avenger Organic Herbicide (EPA Reg. No. 82052-1)

Consultant/Applicator:

Daniel Forey Bio Research

1738 N. Fowler Ave. Fresno, CA 93727

_	ort: Bio Study No. 325-06 ort Date: January 17, 2007		Percent Control Application Date: December 28, 2006						
	Treatments	Application Rate (% AI)	1 DAT		8 DAT		15 DAT		
1	Untreated	0	0.0	С	0.0	С	0.0		
2	Nature's Avenger RTU	17.5%	23.3	b	55.0	a	31.7		
3	Nature's Avenger Concentrate	17.5%	36.3	а	46.3	ab	47.5		
4	Nature's Avenger Concentrate	10.0%	21.3	b	28.3	ь	32.5		
5	Roundup (glyphosate)	4 qt/A	15.0	ъ	27.5	b	28.3		
	LSD ($P = .0$	5)	11.	.28	23	.62	N.S.		
Standard deviation		•				18.60			
	CV (%)						66.42		

Means followed by same letter do not significantly differ (P=.05, Duncan's New MRT)

N.S. - no (statistically) significant differences

Conclusions: After two weeks, the two Nature's Avenger treatments with highest limonene concentration worked best on *Senecio vulgaris*. However, due to variability within treatments, differences were not significant later on (at 15 DAT).

9. Pineapple weed (Matricaria matricarioides)

Nature's Avenger Organic Herbicide (EPA Reg. No. 82052-1)

Consultant/Applicator:

Daniel Forey Bio Research

1738 N. Fowler Ave. Fresno, CA 93727

_	ort: Bio Study No. 325-06 ort Date: January 17, 2007		Percent Control Application Date: December 28, 2006						
	Treatments Application Rate (% AI)		1 DAT	8 DAT	15 DAT				
1	Untreated	0	0.0	0.0	0.0 c				
2	Nature's Avenger RTU	17.5%	12.5	25.0	31.7 ab				
3	Nature's Avenger Concentrate	17.5%	10.0	15.0	40.0 a				
4	Nature's Avenger Concentrate	10.0%	25.0	21.7	22.5 b				
5	Roundup (glyphosate)	4 qt/A	10.0	10.0	25.0 b				
	LSD (P = .0	5)	N.S.	N.S.	14.13				
	Standard Devia	ation	2.24	5.16					
	CV		19.44	36.03					

Means followed by same letter do not significantly differ (P=.05, Duncan's New MRT) N.S. – no (statistically) significant differences

Conclusions: One week after treatment, control of *Matricaria matricarioides* was marginal with all tested products. However, a week later, the products with the highest limonene concentration we most effective with 32-40 % control.

10. Henbit (Lamium ampleicaule)

Nature's Avenger Organic Herbicide (EPA Reg. No. 82052-1)

Consultant/Applicator:

Daniel Forey

Bio Research

1738 N. Fowler Ave. Fresno, CA 93727

_	ort: Bio Study No. 325-06 ort Date: January 17, 2007		Percent Control Application Date: December 28, 2006							
Treatments		Application Rate (% AI)	1 DAT		8 DAT		15 DAT			
1	Untreated	0	0.0	đ	0.0	ь	0.0	c		
2	Nature's Avenger RTU	17.5%	22.5	ab	23.8	a	22.5	а		
3	Nature's Avenger Concentrate	17.5%	30.0	a	28.8	a	22.5	а		
4	Nature's Avenger Concentrate	10.0%	17.5	bc	20.0	а	20.0	ab		
5	Roundup (glyphosate)	4 qt/A	7.5	cd	2.5	Ъ	12.5	ь		
	LSD (P = .05)			.34	13.21		7.96			

Means followed by same letter do not significantly differ (P=.05, Duncan's New MRT)

Conclusions: Control of *Lamium ampleicaule* was poor with all tested products. After 2 weeks, only the two Nature's Avenger treatments with the highest limonene concentration resulted in higher than 20 % control of this weed.

11. Fiddleneck (Amsinckia spp.)

Nature's Avenger Organic Herbicide (EPA Reg. No. 82052-1)

Consultant/Applicator:

Daniel Forey Bio Research

1738 N. Fowler Ave. Fresno, CA 93727

	ort: Bio Study No. 325-06 ort Date: January 17, 2007		Percent Control Application Date: December 28, 2006							
Treatments		Application Rate (% AI)	1 DAT		8 DAT	/5 DAT				
1	Untreated	0	0.0	c	0.0	0.0	b			
2	Nature's Avenger RTU	17.5%	28.8	a	43.8	33.8	a			
3	Nature's Avenger Concentrate	17.5%	25.0	ab	35.0	28.8	а			
4	Nature's Avenger Concentrate	10.0%	18.8	ь	38.8	18.8	ab			
5	Roundup (glyphosate)	4 qt/A	17.5	b	27.5	22.5	a			
LSD (P = .05)			8.81		N.S.	19.33				
Standard Deviation					16.24					
	CV				56.01					

Means followed by same letter do not significantly differ (P=.05, Duncan's New MRT) N.S. – no (statistically) significant differences

Conclusions: Control of *Amsinckia sp.* was poor overall in this study. The two Nature's Avenger products with 17.5 % limonene performed similarly to Roundup with 22-34 % control.

The Efficacy of GreenMatch/ Nature's Avenger® Organic Herbicide on Representative Homeowner Weeds.

BIO STUDY NO. 325-06 January 17, 2007

Research Director:

Daniel Forey

Bio Research

1738 N. Fowler Ave. Fresno, CA 93727 (559) 455-5660

Principal Investigators:

Keith D. Burnell, Ph.D.

Mike Porter Biological Aid

Study Sponsor:

Dr. Pamela Marrone

Marrone Organic Innovations Inc. 215 Madson Place, Suites B/C

Davis, CA 9518 530-902-1014 cell 530-750-2800 office

The Efficacy of GreenMatch/ Nature's Avenger® Organic Herbicide on Representative Homeowner Weeds.

I. Introduction

The objectives of this study were to evaluate the EPA registered organic herbicide, Nature's Avenger Organic Herbicide, for efficacy and formulation characteristics. The product is a non-selective broad-spectrum contact material containing d-limonene, a citrus extract that is reportedly effective against broadleaf weeds and grasses.

II. Materials and Methods

A. Site Location:

Bio-Research

1738 N. Fowler Ave Fresno, CA 93722

B. Weeds:

<u>Sci</u>	entific Name	Common Name	Variety/Bayer Code
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	Annual bluegrass California burclover Common chickweed Common groundsel Common lambsquarters Common mallow Fiddleneck Henbit Horseweed Mouseeared chickweed Pineapple weed Redstem filaree Shepherdspurse	Poa annua Medicago polymorpha Stellaria media Senecio vulgaris Chenopodium album Malva parviflorra Amsinckia spp. Lamium ampleicaule Conzya canadensis Cerastum vulgatum Matricaria matricarioi Erodium cicutarium Capsella bursa-pasto	POAAN MEDPO STEME SENVU CHEAL MALPA AMSTE LAMAM ERICA CERVU des MATMA EROCI Oris CAPBP
17.	Wild Radish	Raphus raphanistrum	n RAPRA

C. Plot Description:

Plot Size:

10 x 10 ft.

Cultural Practices:

The test area was plowed during the late summer and early fall to promote establishment of a weed complex. This area was also planted in the early fall with 33 different weed species for use in projected winter, spring and summer herbicide trials.

Hanford Sandy Loam.

Soil:

D. Pesticide History: No pesticides other than those specified in the

protocol were applied to the plots during the

test interval.

E. Experimental Design: Randomized Complete Block Design

F. Replication No. & Units: 4 replicate plots/treatment

G. Application Equipment:

> A CO₂ compressed air, backpack sprayer was used to deliver forty gallons per acre. A metronome was used to synchronize a walking application speed of 3 mph. The attached spray boom consisted of four nozzles spaced 16" apart to provide an effective 64" spray swath.

Spray Tank:

3 liter plastic bottle 4 8003-XR nozzles

Boom Nozzle: PSI:

42

Spray volume:

40 gpa

Water pH:

6.5 (treatments 3-5)

Height above crop:

18 inches

The water pH was measured using pH paper manufactured by Micro Essential Laboratory, Inc.

H. Treatments:

Dilution of NAO to Water⁽¹⁾

1. Untreated Check

2. Nature's Avenger Organic RTU⁽²⁾

No dilution

3. Nature's Avenger Organic conc.

1:3 (33% dilution)

4. Nature's Avenger Organic conc.

1:6 (16.7% dilution)

5. Roundup Pro

4 qt/A

- (1) No adjuvant or surfactant was added to the NAO products or to the standard, Roundup Pro.
- (2) d-Limonene technical grade): 17.5%

Emulsifiers: 0 to 8% Water: 72 to 78%

1. <u>Application</u>

Date:

December 28, 2006

Time:

11:00 a.m. to 12:00 p.m.

Temperature:

51° F

Relative Humidity:

74%

Wind Speed:

1.5 mph

Wind Direction:

S

Cloud Cover:

80%

Plant Growth Stage:

POAAN 2-6" bloom MEDPO 4-6" bloom STEME 1-4" prostrate SENVU 3-12" bloom

MALPA 3-20" prostrate, no bloom

LAMAM 2-8" bloom CERVU 2-5" bloom MATMA 3-8" bloom

EROCI 4-24" radial prostrate, no bloom

CAPBP RAPRA 0.5-18" rosette to bloom 0.5-18" rosette to bloom

Plant Vigor: Foliar Moisture:

Good Dry

J. Environmental Conditions:

The following weather data was recorded at the Fresno weather station, located approximately 5 miles southwest of the test site (Statewide Weather Service – CIMIS Project) from December 28, 2006 to January 15, 2007:

Total Rainfall:

0.9 inches

High Temperature: Low Temperature:

63.4° F (January 9, 2007)

Min. Relative Humidity:

21.0° F (January 15, 2007) 27-72%

Max. Relative Humidity:

78-91%

See Appendix 1 for complete environmental data.

K. Test Procedures:

The trial was placed in an established open area on-site at Bio Research with a well-developed infestation and assortment of various weed species at different growth stages. At the time of study initiation, bermudagrass was dormant and weeds such as California burclover, common chickweed, henbit, and shepherd's purse were in bloom. Most perennial plants were in the rosette stage. Grasses, such as annual bluegrass, ranged from newly emerged plants less than 3 inches tall, to seedhead stage plants that were 6+ inches tall.

After an initial pre-treatment inventory of the weed species present in each plot, a visual rating of the efficacy of treatments was performed at 1, 4, 7, and 14 days after application (DAA). Efficacy was based on a visual rating of plant injury using a 0-100% rating scale as follow:

0 = no injury; plants did not look any different from the untreated group or plants infesting areas outside the plots.

- 25 = slight chlorosis (yellowing) on 25% of the plant, or a slight stunting/growth inhibition of plants with no chlorosis.
- 50% = more severe chlorosis (yellowing) turning to necrosis (black) on 50% of individual plants and/or a combination of chlorosis and/or necrosis plus stunting/growth inhibition of plant.
- 75% = necrosis (black) on 75% of plants and/or a combination of necrosis plus stunting/growth inhibition of plant.
- 100% = complete kill of the visible aboveground plant parts, no green or live tissue visible.

L. Statistical Analysis:

The percent plant injury was analyzed using LSD, CV, and Duncan's New Multiple Range Test (p = 0.05) using Gylling's Agriculture Research Manager Program.

III. Results and Discussion

Plant injury in plots treated with Nature's Avenger Organic RTU Herbicide was observed within 3 hours of application. The symptoms included white and yellow tissue discoloration, along with black spotting on many of the broadleaf weeds. In addition, plants such as grasses and fiddleneck appeared to be "water soak" and "limp" indicating a loss in turgor pressure.

Overall weed control was fair to excellent depending on the stage of growth of that particular weed (Tables 1-4). In general, Nature's Avenger Organic Herbicide performed best at a 1:3 dilution (33% v/v), which was both faster acting and achieved the highest level of control of most species (Figure 1). Second was the undiluted RTU formulation, followed by NAO at a 1:6 dilution (16.7% v/v). The least effective treatment, at least initially, was the standard, Roundup at 4 qt/acre. It also appeared that the products were faster acting and more consistent against broadleaf weeds in general than the grass weed species <u>Poa annua</u>.

Shepherdspurse had matured and seeded by the time of study initiation and plants were easily killed by all treatments. The fact that most of the plants were probably on the decline encouraged the perception of increased control by all treatments compared to other weed species. In contrast, of the 14 weeds evaluated in this test the following were not altogether effectively controlled (i.e. control was never consistently greater than 60%) by NAO at any dilution rate: redstem filaree, horseweed, common groundsel, wild radish, pineapple weed, common mallow, henbit, and fiddleneck spp. On the positive side, 6 weed species were consistently controlled with the NAO treatments, including: poa annua, California burclover, common and mouseeared chickweed, common lambsquarters, and shepherdspurse, although, as mentioned, this species was

already fully mature and susceptible to treatments at the time of study initiation.

Poa annua: Peak control was achieved with the NAO products at 4 to 8 days after application with significant control by all treatments observed beginning 1 DAA (Table 1). Plots treated with Roundup showed a gradual increase in control through 15 DAA at which time they attained statistical parity with the NAO groups (Table 4). Peak control by the various treatments were as follows:

NAO (33% v/v) 72.5% NAO RTU 61.3% NAO (16.7%) 50.0% Roundup 40.0%

No treatment fully eliminated Poa and a reapplication, or greater initial coverage, would likely be needed to eliminate this weed.

California burclover: Significant control by all treatments was observed 1 DAA, ranging 30 to 50% with the NAO treatments, and 21% with Roundup (Table 1). As with Poa, the non-diluted RTU and the 33% dilution proved faster acting than the 16.7% dilution, with the former showing 83 to 93% control through 8 DAA, compared to 50 to 60% control with the 16.7% v/v treatment. Roundup ended the study 15 DAA at 67% control. None of the treatments fully eliminated California burclover and a reapplication would be needed to completely control this weed.

Chickweed: Plant injury by NAO treatments to Common chickweed ranged from 38 to 46% 1 DAA, compared to 58 to 73% damage to Mouseeared chickweed. Roundup, by comparison, provided 12 to 23% control initially, and ended the study at just over 40% control 15 DAA. Mouseeared chickweed proved to be one of the easiest weeds to control using NAO herbicide. At 4 DAA, all NAO treatments provided greater than 95% control, with peak control of 97 to 98% observed 8 DAA (Table 3). Common chickweed seemed to withstand treatments a little better, although at 15 DAA all NAO applications resulted in greater than 70% control. No treatment completely eliminated common chickweed, although with better coverage one application might succeed. Mouseeared chickweed was all but eliminated from plots following a single application of NAO. Again, slightly better coverage may have succeeded where 40 gpa did not.

Shepherdspurse: As discussed this weed was controlled 90+% by all treatments, including Roundup. It is likely that less control would be seen during times of optimum growth, consequently subsequent evaluations during the optimum growing season should be considered to better gain an idea of the effectiveness of NAO against this species.

Common lambsquaters: NAO was generally fast acting against this species, with products averaging 50 to 64% control only 1DAA, and about 80% control by 4 DAA (Table 2). Optimum control was observed 8 to 15 DAA with the NAO materials, all achieving 98% control at some point during that time interval. In contrast, Roundup achieved a maximum of about 50% control during the test period. This weed most likely

would be controlled entirely with a single application when the correct coverage again was applied.

Further Discussion:

It would appear that application volume is an area in need of further exploration. Clearly, to optimize the control of most weeds in this study a second application would be required, at least at the application volume used here. It may be that at an increased volume, above 40 GPA, enough increased coverage would offset the need for a second application. The products are undoubtedly efficacious and certainly faster acting than the standard, Roundup. Coverage and timing seem to be the key.

TABLES

Table 1. Evaluation of percent weed control using Nature's Avenger Organic RTU Herbicide at 1 day after application (DAA) (see Appendix 2 for plot data).

			T						
Weed Code			POAAN	MEDCO	STEME	CERVU	EROCI	CAPBP	CHEAL
Crop Code			A. blueg	Burclove	C. chick	M. chick	Redstem	Shep	Lambsqua
Part Rated			PERCNT						
Rating Data Type			DAMAGE						
Rating Unit			0-100%	0-100%	0-100%	0-100%	0-100%	0-100%	0-100%
Rating Date			12/29/06	12/29/06	12/29/06	12/29/06	12/29/06	12/29/06	12/29/06
Trt-Eval Interval			1 DAA						
Treatment		Rate							
Name	Rate	Unit					•		
Untreated			0.0 c	0.0 d	0.0 b	0.0 с	0.0 b	0.0 с	0.0 d
Nature's Avenger Org. RTU			26.3 ab	50.0 a	46.7 a	57.5 a	21.3 a	81.3 a	60.0 a
Nature's Avenger Org. Con	33	% v/v	28.8 a	50.0 a	41.7 a	72.5 a	23.3 a	90.0 a	63.8 a
Nature's Avenger Org. Con	16.7	% v/v	30.0 a	30.0 b	37.5 a	60.0 a	25.0 a	72.5 a	50.0 b
Roundup (Glyphosate)	4	qt/a	21.3 b	21.7 с	11.7 b	23.3 b	25.0 a	38.8 b	30.0 с
LSD (P=.05)			6.63	7.66	22.00	17.24	7.41	18.81	8.51
Standard Deviation			4.31	4.79	13.75	11.08	4.54	12.20	5.32
CV			20.26	15.8	50.01	25.96	24.01	21.6	13.06
Grand Mean			21.25	30.33	27.5	42.67	18.92	56.5	40.75
Bartlett's X2			5.416	0.092	6.822	5.472	1.705	4.193	0.048
P(Bartlett's X2)			0.144	0.762	0.078	0.14	0.426	0.123	0.826
Friedman's X2			10.95	14.85	12.85	13.1	8.65	14.2	15.25
P(Friedman's X2)			0.027	0.005	0.012	0.011	0.07	0.007	0.004

Table 1, continued. Evaluation of percent weed control using Nature's Avenger Organic RTU Herbicide at 1 day after application (DAA)(see Appendix 2 for plot data).

Weed Code			EDICA	OFNUAL					
Crop Code			ERICA Horsewee	SENVU		MATMA	MALPA	LAMAM	AMSTE
Part Rated				Groundse	Wild rad	Pineappl		Henbit	F.neck
Rating Data Type			PERCNT	PERCNT	PERCNT	PERCNT	PERCNT	PERCNT	PERCNT
Rating Unit			DAMAGE	DAMAGE	DAMAGE	DAMAGE	DAMAGE	DAMAGE	DAMAGE
Rating Date			0-100%	0-100%		0-100%	0-100%	0-100%	0-100%
Trt-Eval Interval			12/29/06	12/29/06	12/29/06	12/29/06	12/29/06	12/29/06	12/29/06
Treatment		Doto	1 DAA	1 DAA	1 DAA	1 DAA	1 DAA	1 DAA	1 DAA
Name	Rate	Rate				i	İ	i	
Untreated	Nate	Unit							
Ontreated			0.0	0.0 c	0.0 с	0.0 c	0.0	0.0 d	0.0 с
Nature's Avenger Org. RTU			15.0	22.2 h	05.0				
Transcription of g. 1410			15.0	23.3 b	25.0 a	12.5 b	10.0	22.5 ab	28.8 a
Nature's Avenger Org. Con	33	% v/v		36.3 a	10.0 b	10.0 b		20.0	
				50.0 a	10.0 D	10.0 b		30.0 a	25.0 ab
Nature's Avenger Org. Con	16.7	% v/v	20.0	21.3 b	25.0 a	25.0 a	0.0	17.5 bc	18.8 b
	71000					20.0 4	0.0	17.0 bc	10.6 D
Roundup (Glyphosate)	4	qt/a	10.0	15.0 b	25.0 a	10.0 b		7.5 cd	17.5 b
								7.0 00	17.5 0
LSD (P=.05)		į	.:	11.28	0.00	6.80		11.34	8.81
Standard Deviation			. [7.16	0.00	2.24	[[7.36	5.66
CV			.	37.35	0.0	19.44		47.48	31.45
Grand Mean		l	2.81	19.17	17.0	11.5	0.83	15.5	18.0
Bartlett's X2			.]	1.763	0.0	0.0	0.00	0.979	0.08
P(Bartlett's X2)			.	0.623	. !			0.806	0.961
Friedman's X2		ŀ	.]	14.5	12.8	14.15		11.75	10.7
P(Friedman's X2)			<u>.</u>	0.006	0.012	0.007		0.019	0.03

Table 2. Evaluation of the weed control using Nature's Avenger Organic RTU Herbicide at 4 DAA (see Appendix 3 for plot data).

			,						
Weed Code			POAAN	MEDCO	STEME	CERVU	EROCI	CAPBP	CHEAL
Crop Code			A. blueg	Burclove	C. chick	M. chick	Redstem	Shep	Lambsqua
Part Rated		:	PERCNT	PERCNT	PERCNT	PERCNT	PERCNT	PERCNT	PERCNT
Rating Data Type		i	DAMAGE	DAMAGE	DAMAGE	DAMAGE	DAMAGE	DAMAGE	DAMAGE
Rating Unit			0-100%	0-100%	0-100%	0-100%	0-100%	0-100%	0-100%
Rating Date			1/1/07	1/1/07	1/1/07	1/1/07	1/1/07	1/1/07	1/1/07
Trt-Eval Interval			4 DAA 4 DAA	4 DAA					
Treatment		Rate							
Name	Rate	Unit							
Untreated			0.0 d	0.0 d	0.0 b	0.0 d	0.0 b	0.0 с	0.0 b
Nature's Avenger Org. RTU			55.0 ab	83.3 a	78.3 a	95.8 ab	21.3 ab	98.0 a	83.3 a
Nature's Avenger Org. Con	33	% v/v	72.5 a	93.3 a	63.3 a	97.3 a	23.3 ab	98.0 a	74.0 a
Nature's Avenger Org. Con	16.7	% v/v	50.0 b	48.8 b	56.3 a	94.5 b	43.3 a	97.3 a	83.3 a
Roundup (Glyphosate)	4	qt/a	26.3 с	21.7 с	11.7 b	10.0 с	32.5 a	56,3 b	53.3 a
LSD (P=.05)			20.72	16.19	39.80	2.42	28.79	10.38	38.43
Standard Deviation			13.45	10.12	24.88	1.56	17.66	6.74	24.02
cv			33.0	20.48	59.36	2.62	73.32	9.64	40.86
Grand Mean			40.75	49.42	41.92	59.5	24.08	69.9	58.8
Bartlett's X2			4.161	6.938	6.561	2.569	9.08	9.376	11.874
P(Bartlett's X2)			0.245	0.074	0.087	0.277	0.028*	0.002*	0.008*
Friedman's X2			13.45	16.0	13.4	13.85	10.6	12.95	11.6
P(Friedman's X2)			0.009	0.003	0.009	0.008	0.031	0.012	0.021

Table 2, continued. Evaluation of the weed control using Nature's Avenger Organic RTU Herbicide at 4 DAA (see Appendix 3 for plot data).

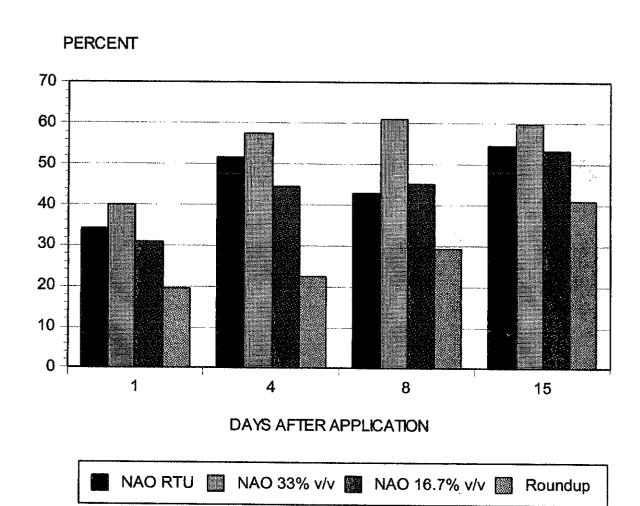
Weed Code			ERICA	SENVU	RAPRA	MATMA	BAAL DA		
Crop Code			Horsewee	Groundse	Wwild rad		MALPA		AMSTE
Part Rated			PERCNT	PERCNT		Pineappl	Mallow	Henbit	F.neck
Rating Data Type			DAMAGE	DAMAGE	DAMAGE	PERCNT DAMAGE	PERCNT	PERCNT	PERCNT
Rating Unit			0-100%	0-100%	0-100%		DAMAGE	DAMAGE	DAMAGE
Rating Date			1/1/07	1/1/07	1/1/07	0-100% 1/1/07	0-100%	0-100%	0-100%
Trt-Eval Interval			4 DAA	4 DAA	4 DAA	4 DAA	1/1/07	1/1/07	1/1/07
Treatment		Rate	7 0701	7 0///	4 DAA	4 DAA	4 DAA	4 DAA	4 DAA
Name	Rate				i	}	i		
Untreated	, , , , , ,	<u> </u>	0.0	0.0 c	0.0 a	0.0 c	0.0	- 00 -	
			0.0	0.0 0	0.0 a	0.0 6	0.0	0.0 с	6.3 b
Nature's Avenger Org. RTU			15.0	28.3 ab	62.5 a	12.5 b	10.0	20.0 -1	40.0
, , , , , , , , , , , , , , , , , , ,			10.0	20.0 00	02.5 a	12.0 0	10.0	30.0 ab	48.8 a
Nature's Avenger Org. Con	33	% v/v		50.0 a	10.0 a	10.0 b		47.5 a	40.5
0 0	7.7			00.0 4	10.0 a	10.0 0		47.5 a	49.5 a
Nature's Avenger Org. Con	16.7	% v/v	20.0	32.5 ab	25.0 a	22.5 a	0.0	17.5 bc	20.0 -1-
0				02.0 40	20,0 0	22.0 a	0.5	17.5 00	33.8 ab
Roundup (Glyphosate)	4	qt/a	10.0	11.7 bc	25.0 a	10.0 b		7.5 c	17.5 ab
, , ,,		,			20.0 4	10.0 B		7.5 6	17.5 ab
LSD (P=.05)				24.21	255.70	8.33		20,14	34.08
Standard Deviation		J		15.37	28.46	2.74	.	13.07	22.12
CV		-		62.73	116.17	24.9	.	63.76	71.01
Grand Mean			2.81	24.5	24.5	11.0	0.83	20.5	31.15
Bartlett's X2			.1	1.313	0.0	0.0	0.00	6,414	5.606
P(Bartlett's X2)		1		0.726	3.0	1,00	•	0.093	0.231
Friedman's X2		ľ		13.8	15,2	14.15	1	13.1	9.75
P(Friedman's X2)			. [0.008	0.004	0.007	1	0.011	0.045

Table 3. Mean control treatment data for the evaluation of the weed control using Nature's Avenger Organic RTU Herbicide at 8 DAA (see Appendix 4 for plot data).

Weed Code			POA	λΚΪ	MEDCO	STEME	CEDVAL	FDOOL	CARRE	au e
Crop Code			A. blu		Burclove		CERVU	EROCI	CAPBP	CHEAL
Part Rated			PERC			C. chick	M. chick	Redstem	Shep	Lambsqua
Rating Data Type			DAMA		PERCNT DAMAGE	PERCNT	PERCNT	PERCNT	PERCNT	PERCNT
						DAMAGE	DAMAGE	DAMAGE	DAMAGE	DAMAGE
Rating Unit		•	0-10		0-100%	0-100%	0-100%	0-100%	0-100%	0-100%
Rating Date			1/5		1/5/07	1/5/07	1/5/07	1/5/07	1/5/07	1/5/07
Trt-Eval Interval		m	8 D	AA.	8 DAA	8 DAA	8 DAA	8 DAA	8 DAA	8 DAA
Treatment	. .	Rate								
Name	Rate	Unit								
Untreated			0.0	d	0.0 d	0.0 с	0.0 с	0.0 b	0.0 с	0.0 с
Nature's Avenger Org. RTU			61.3	ab	88.3 a	60.8 a	98.0 a	53.3 a	83.5 a	98.0 a
Nature's Avenger Org. Con	33	% v/v	68.8	а	87.7 a	48.3 ab	98.0 a	46.7 a	98.0 a	98.0 a
Nature's Avenger Org. Con	16.7	% v/v	47.5	bc	57.5 b	43.8 abc	97.0 a	33.3 а	97.3 a	87.5 a
Roundup (Glyphosate)	4	qt/a	32.5	С	15.0 c	10.0 bc	12.5 b	35.0 a	51.7 b	41.7 b
LSD (P=.05)				70	14.64	42.74	2.05	30.43	24.90	18.54
Standard Deviation			12	.14	9.16	26.72	1.28	18.66	16.00	10.20
CV			2	8.9	18.42	82.04	2.1	55.46	24.21	15.68
Grand Mean			4:	2.0	49.7	32.57	61.1	33.65	66.08	65.03
Bartlett's X2			3.2	97	2.697	1.191	0.682	4.992	12.768	1.901
P(Bartlett's X2)			0.3	48	0.441	0.551	0.409	0.172	0.002*	0.168
Friedman's X2			11	.75	15.4	13.0	13.4	10.6	11.65	15.2
P(Friedman's X2)			0.0	119	0.004	0.011	0.009	0.031	0.02	0.004

Table 3, continued. Mean control treatment data for the evaluation of the weed control using Nature's Avenger Organic Herbicide at 8 DAA (see Appendix 4 for plot data).

[10]			==.04						
Weed Code			ERICA	SENVU	RAPRA	MATMA	MALPA	LAMAM	AMSTE
Crop Code			Horsewee	Groundse	Wild rad	Pineappl	Mallow	Henbit	F.neck
Part Rated			PERCNT	PERCNT	PERCNT	PERCNT	PERCNT	PERCNT	PERCNT
Rating Data Type			DAMAGE	DAMAGE	DAMAGE	DAMAGE	DAMAGE	DAMAGE	DAMAGE
Rating Unit			0-100%	0-100%	0-100%	0-100%	0-100%	0-100%	0-100%
Rating Date			1/5/07	1/5/07	1/5/07	1/5/07	1/5/07	1/5/07	1/5/07
Trt-Eval Interval			8 DAA 8 DAA	8 DAA					
Treatment		Rate							
Name	Rate	Unit							}
Untreated			0.0	0.0 с	0.0	0.0 b	0.0	0.0 b	0.0 b
Nature's Avenger Org. RTU				55.0 a	10.0	25.0 a	15.0	23.8 a	43.8 a
Nature's Avenger Org. Con	33	% v/v		46.3 ab		15.0 ab		28.8 a	35.0 a
Nature's Avenger Org. Con	16.7	% v/v	25.0	28.3 b	25.0	21.7 a	10.0	20.0 a	38.8 a
Roundup (Glyphosate)	4	qt/a		27.5 b	85.0	10.0 ab		2.5 b	27.5 a
LSD (P=.05)	·	·—-······		23.62		15.71		13.21	25.28
Standard Deviation				14.48	.	5.16		8.58	16.24
[CV				46.1		36.03		57.17	56.01 i
Grand Mean			3.13	31.42	7.5	14.33	2.08	15.0	29.0
Bartlett's X2				5.912	. 1	0.0	. !	9.897	3.999
P(Bartlett's X2)				0.116		. 1	. 1	0.019*	0.262
Friedman's X2				12.05		14.95		12.5	8.9
P(Friedman's X2)				0.017	<u>.</u>	0.005		0.014	0.064


Table 4. Mean control treatment data for the evaluation of the weed control using Nature's Avenger Organic RTU Herbicide at 15 DAA (see Appendix 5 for plot data).

Weed Code			POAAN	MEDCO	STEME	CERVU	EROCI	CADDD	OUEAL
Crop Code			A. blue		Cc. chick	M. chick	Redstem	CAPBP	
Part Rated			PERCN			PERCNT	PERCNT	Shep PERCNT	
Rating Data Type			DAMAGE		DAMAGE	DAMAGE	DAMAGE	DAMAGE	PERCNT
Rating Unit			0-100%	1	1	0-100%	0-100%	0-100%	DAMAGE
Rating Date			1/12/07		1	1/12/07	1/12/07	1/12/07	0-100%
Trt-Eval Interval			15 DA/	· ·	1	15 DAA	15 DAA	15 DAA	1/12/07 15 DAA
Treatment		Rate		10 2.01	10 2700	10 27 0 1	10 0/ 41	וט טאא	15 DAA
Name	Rate	Unit		i					
Untreated			0.0 b	0.0 b	0.0 c	0.0 с	0.0 b	0.0 b	0.0 d
Nature's Avenger Org. RTU			60.0 a	65.0 a	71.3 a	95.0 a	43.8 a	96.5 a	83.5 b
						00.0 G	40.0 a	90.5 a	03.0 U
Nature's Avenger Org. Con	33	% v/v	56.3 a	73.3 a	76.7 a	94.5 a	41.7 a	97.3 a	97.8 a
Nature's Avenger Org. Con	16.7	% v/v	45.0 a	60.0 a	71.3 a	88.8 a	41.7 a	97.3 a	98.3 a
Roundup (Glyphosate)	4	qt/a	40.0 a	66.7 a	43.3 b	40.0 b	55.0 a	90.3 a	50.0 c
LSD (P=.05)			19.67	27.62	13.81	8.73	19.17	9.82	10.55
Standard Deviation			12.78	17.53		5.61	11.76	6.37	6.70
CV			31.71			8.82	32.29	8.36	10.16
Grand Mean		:	40.25	53.0	52.5	63.65	36.42	76.25	65.92
Bartlett's X2			0.998	8.114	4.902	2.653	0.816	20.888	13.616
P(Bartlett's X2)			0.802	0.044*	0.179	0.265	0.846	0.001*	0.003*
Friedman's X2			9.85	8.5	12.85	13.4	10.2	8.4	13.75
P(Friedman's X2)			0.043	0.075	0.012	0.009	0.037	0.078	0.008

Table 4, continued. Mean control treatment data for the evaluation of the weed control using Nature's Avenger Organic RTU Herbicide at 15 DAA (see Appendix 5 for plot data).

		EDICA	OF NAI	DADDA	A40 T140	4441.54		
							1	AMSTE
								F.neck
				1 /				PERCNT
								DAMAGE
					0-100%	0-100%	0-100%	0-100%
			1/12/07	1/12/07	1/12/07	1/12/07	1/12/07	1/12/07
		15 DAA	15 DAA	15 DAA	15 DAA	15 DAA	15 DAA	15 DAA
	Rate							
Rate	Unit							
		0.0	0.0 b	0.0 a	0.0 с	0.0	0.0 с	0.0 b
.			31.7 a	50.0 a	31.7 ab	25.0	22.5 a	33.8 a
33	% v/v		47.5 a		40.0 a	40.0	22.5 a	28.8 a
16.7	% v/v	75.0	32.5 a	50.0 a	22.5 b	25.0	20.0 ab	18.8 ab
4	qt/a	10.0	28.3 ab	50.0 a	25.0 b	· · · · · · · · · · · · · · · · · · ·	12.5 b	22.5 a
			29.30	275.09	14.13		7.96	19.33
			18.60	30.62	6.28	.]	5.16	12.42
			66.42	81.65	26.35		33.32	59.87
		7.08	28.0	37.5	23.83	5.63	15.5	20.75
		. !	2.532	F .	0.584			3.435
		, 1						0.329
						[[9.25
		,			0.007			0.055
	33		1/12/07 15 DAA Rate Unit 0.0 33 % v/v 16.7 % v/v 75.0	Horsewee PERCNT DAMAGE 0-100% 1/12/07 1/12/07 15 DAA 15 DAA Rate Unit 0.0 0.0 b 31.7 a 33 % v/v 75.0 32.5 a 4 qt/a 10.0 28.3 ab 4 qt/a 10.0 28.3 ab 29.30 18.60 66.42 7.08 28.0 2.532 0.47 9.25	Horsewee PERCNT DAMAGE 0-100% 1/12/07 1/12/07 1/12/07 1/12/07 15 DAA 15 DAA 15 DAA 15 DAA 15 DAA 16.7 % v/v 75.0 32.5 a 50.0 a 4 qt/a 10.0 28.3 ab 50.0 a 18.60 30.62 66.42 81.65 7.08 28.0 37.5 2.532 0.0 0.47 9.25 7.2	Horsewee PERCNT DAMAGE	Horsewee PERCNT PERCNT DAMAGE D	Horsewee PERCNT PERCNT DAMAGE
FIGURES

FIGURE 1. OVERALL PERCENT CONTROL OF BROADLEAF WEEDS AND GRASSES AT EACH EVALUATION PERIOD.

APPENDIX

Appendix 1. Environmental Data for the trial duration.

in Region 2007 DATE	ETo		SOLAR V	APOR AVE	AIR MAX		AVE .t	REL. MAX	MIN	AVE	DEW PT	WIND AVE mph	WIND RUN mi	AVE SOIL F
12/28/06	0.05	0.00	229	5.9	49.5	30.7	39.8	87	58	71	31.1	4.1	98.3	51.4
12/29/06	0.04	0.01	216	6.0	53.4	28.6	39.4	90	47	73	31.6	2.3		50.1
12/30/06	0.05	0.00	230	6.0	55.8	27.7	39.7	90	41	72	31.4	2.1	51.2	49.4
12/31/06	0.05	0.00	212	6.8	55.7	30.0	42.4	90	51	74	34.8	4.5	109.1	49.1
01/01/07	0.02	0.00	122	6.9	48.5	32.6	38.6	91	72	87	35,0	3.2		49.5
01/02/07	0.04	0.00	174	7.0	55.2	29.8	41.6	91	55	78	35.3	3.0	73.3	49.1
01/03/07	0.05	0.00	224	7.5	61.3	31.9	44.6	90	46	74	37.0	2.1	50.1	49.4
01/04/07	0.02	0.13	56	8.3	52.9	35.7	45.1	89	66	82	39.8	6.5	155.8	49.7
01/05/07	0.05	0.00	245	5.7	50.8	31.9	40.5	84	44	67	30.4	5.8	140.2	49.6
01/06/07	0.05	0.00	227	5.8	51.7	27.5	38.9	89	49	73	30.9	2.6	63.7	48.8
01/07/07	0.05	0.00	228	6.0	55.9	28.9	40.2	90	43	71	31.7	2.2	52.0	48.5
01/08/07	0.05	0.00	233	6.4	59.6	28.3	41.3	90	44	73	33.2	1.8	42.8	48.2
01/09/07	0.05	0.00	235	6.8	63.4	28.3	42.8	91	41	73	34.7	1.9	44.9	48.1
01/10/07	0.05	0.00	216	7.0	61.5	29.6	43.9	91	42	72	35.5	2.9	69.7	48.2
01/11/07	0.06	0.00	188	5.0	48.3	26.2	39.9	78	35	60	27.0	6.4	153.6	48.5
01/12/07	0.05	0.00	249	4.0	45.3	21.9	32.8	88	28	63	21.5	3.6	87.7	47.1
01/13/07	0.05	0.00	260	3.3	46.0	23.0	32.9	86	27	52	17.4	2.5	59.7	45.8
01/14/07	0.05	0.00	250	3.5	47.2	22.3	32.8	81	31	56	18.8	2.3	55.5	42.0
01/15/07	0.06	0.00	259	3.6	52.4	21.0	34.2	85	23	54	19.2	2.4		41.4
 Ly/day*.4						F-32)							Bars*.	

H-missing hourly I-ignore M-missing Q-related sensor miss. S-not in service

Appendix 2. Plot data summary of weed control using Nature's Avenger Organic RTU Herbicide at 1 DAA.

Weed Code		POAAN	MEDCO	STEME	CERVU	EROCI	CAPBP	CHEAL
Crop Code		A. blueg	burclove	c. chick	M. chick	Redstem	Shep	
Part Rated		PERCNT		PERCNT	PERCNT	PERCNT	PERCNT	Lambsqua
Rating Data Type		DAMAGE		DAMAGE	DAMAGE	DAMAGE	DAMAGE	PERCNT
Rating Unit		0-100%	0-100%	0-100%	0-100%	0-100%	0-100%	DAMAGE
Rating Date		12/29/06	12/29/06	12/29/06	12/29/06	12/29/06	12/29/06	0-100%
Trt-Eval Interval		1 DAA	1 DAA	1 DAA	1 DAA	1 DAA	1 DAA	12/29/06
Treatment	Rate		, 5, 0,	1 0,04	1000	I DAA	I DAA	1 DAA
Name	Rate Unit Plot						·	
Untreated	101	0.0	0.0	0.0	0.0	0.0	0.0	
	205	0.0	0.0	0.0	0.0	0.0		0.0
	301	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	405	0.0	0.0	0.0	0.0	0.0	0.0	0.0
			0.0	0.0	0.0	0.0	0.0	0.0
	Mean =	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Nature's Avenger Org. RTU	102	25.0			60.0	10.0	75.0	60.0
	203	30.0	50.0	40.0	60.0	25.0	80.0	00.0
	305	25.0	50.0	50.0	60.0	25.0	90.0	60.0
	403	25.0	50.0	50.0	50.0	25.0	80.0	60.0
i							33.3	00.0
National Accordance	Mean =	26.3	50.0	46.7	57.5	21.3	81.3	60.0
Nature's Avenger Org. Con	33 % v/v 103	30.0	50.0		75.0		90.0	60.0
	204	30.0	j	50.0	75.0	25.0	90.0	75.0
	302	30.0	50.0	50.0	60.0	20.0	90.0	60.0
	404	25.0	50.0	25.0	80.0	25.0	90.0	60.0
•						i		00.0
Noturals August One O	Mean =	28.8	50.0	41.7	72.5	23.3	90.0	63.8
Nature's Avenger Org. Con	16.7 % v/v 104	25.0	30.0	50.0	50.0	20.0	60.0	50.0
	201	40.0	25.0	15.0	50.0	į	80.0	50.0
	303	30.0	40.0	25.0	60.0	30.0	60.0	50.0
	402	25.0	25.0	60.0	80.0	25.0	90.0	-5.5
			i				-	
Boundan (Charles sta)	Mean =	30.0	30.0	37.5	60.0	25.0	72.5	50.0
Roundup (Glyphosate)	4 qt/a 105	10.0	25.0	10.0	10.0		30.0	25.0
	202	25.0	ŀ			į	25.0	-2.0
	304	25.0	15.0	15.0	10.0	25.0	25.0	25.0
•	401	25.0	25.0	10.0	50.0	25.0	75.0	40.0
	B. J	<u>, , , </u>			ļ		-	.5.0
	Mean =	21.3	21.7	11.7	23.3	25.0	38.8	30.0

Appendix 2, continued. Plot data summary of weed control using Nature's Avenger Organic RTU Herbicide at 1 DAA.

AOV For P	ΘΔΔΚ	A. blueg PERCNT DA	MACE O 4000 40	100100 4 1	
1	OZZI	A. blueg FERCINI DA	WAGE 0-100% 12	29/06 1 1	JAA
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
Total	19	2793.750000		'	FIUD(F)
Replicate	3		44.583333	2.404	0.1183
Treatment	4	2437.500000	609.375000		
Error	12	222.500000	18.541667		0.0001
		burclove PERCNT DA	MAGE 0.100% 12	120/06 4	DAA.
1,100,100,111		Daiolove i Eliciti De	WAGE 0-100% 12	129/00 1	DAA
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
Total	16	7292.220960		'	1 100(1)
Replicate	3		3.333021	0.145	0.9302
Treatment	4	9.999064 [°] 7075.554211 206.667685			0.0001
Error	9	206.667685	22,963076	1	
AOV For S	TEME	c. chick PERCNT DAM	AGE 0-100% 12/2	9/06 1 D	ΑΔ
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
Total	16	8525.000232		•	,
Replicate	3	122.778263	40.926088	0.216	0.8826
Treatment	4	6700.000928	1675.000232	8.856	0.0035
Error	9	1702.221041	189.135671]	
AOV For C	ERVU	M. chick PERCNT DAN	MAGE 0-100% 12/	29/06 1 E	DAA
1					
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
Total	18	16385.557321			• • •
Replicate	3	616.667979	205.555993	1.675	0.2295
Treatment	4	14418.890744	3604.722686	29.372	0.0001
Error	11	1349.998599	122.727145		
AOV For EF	ROCLI	Redstem PERCNT DAN	//AGE 0-100% 12/	29/06 1 D	AA
0011000					
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
Total	15	2062.638534			,
Replicate	3	70.416361	23.472120	1.138	0.3905
Treatment	4	1827.221956		22.148	0.0002
Error	8	165.000216	20.625027		
AUV For CA	ABB	Shep PERCNT DAMAC	E 0-100% 12/29/0	06 1 DAA	
COLIDOR	חר	CLIMATERATE			
SOURCE Total	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
	19	24555.000000	0.00		
Replicate	3	775.000000	258.333333	1.734	0.2131
Treatment	4	21992.500000		36.910	0.0001
Error	12	1787.500000	148.958333		
AUV FOR CE	ICAL i	Lambsqua PERCNT DA	MAGE 0-100% 12	2/29/06 1	DAA
SOURCE	DF	STIM OF SOUNDED	MEANIOGUAGE		
Total	16	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
1		11363.750000	04.00		_
Replicate	3	63.750000	21.250000	0.750	0.5493
Trantmont			ህንራሳ ኃይለለለለ	07 /52	0.0004
Treatment Error	4 9	11045.000000 255.000000	2761,250000 28,333333	97.456	0.0001

Appendix 2, continued. Plot data summary of weed control using Nature's Avenger Organic RTU Herbicide at 1 DAA.

Weed Code	ERICA	SENVU	RAPRA	MATMA	MALPA	LAMAM	AMSTE
Crop Code	Horsewee	groundse	wild rad	pineappl	mallow	Henbit	F.neck
Part Rated	PERCNT	PERCNT	PERCNT	PERCNT	PERCNT	PERCNT	PERCNT
Rating Data Type	DAMAGE	DAMAGE	DAMAGE	DAMAGE	DAMAGE	DAMAGE	DAMAGE
Rating Unit	0-100%	0-100%	0-100%	0-100%	0-100%	0-100%	0-100%
Rating Date	12/29/06	12/29/06	12/29/06	12/29/06	12/29/06	12/29/06	12/29/06
Trt-Eval Interval	1 DAA	1 DAA	1 DAA	1 DAA	1 DAA	1 DAA	1 DAA
Treatment Rate							
Name Rate Unit Plot							
Untreated 101	0.0	0.0	0.0	0.0	0.0	0.0	
205	0.0	0.0	0.0	0.0	0.0	0.0	0.0
301	0.0	0.0	0.0	0.0	0.0	0.0	0.0
405	0.0	0.0	0.0	0.0	0.0	0.0	0.0
							0.0
Mean =	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Nature's Avenger Org. RTU 102		30.0	25.0			25.0	25.0
203		15.0	25.0			30.0	25.0
305	15.0			10.0		10.0	25.0
403		25.0		15.0	10.0	25.0	40.0
						_0.0	.0.0
Mean =	15.0	23.3	25.0	12.5	10.0	22.5	28.8
Nature's Avenger Org. Con 33 % v/v 103		40.0				25.0	25.0
204		30.0				30.0	25.0
302		50.0			İ	25.0	25.0
404		25.0	10.0	10.0		40.0	25.0
Mean =		36.3	10.0	10.0		30.0	25.0
Nature's Avenger Org. Con 16.7 % v/v 104		25.0				25.0	15.0
201		25.0	25.0	1		10.0	10.0
303		15.0		25.0		25.0	25.0
402	20.0	20.0		25.0	0.0	10.0	25.0
		1				1	
Mean =	20.0	21.3	25.0	25.0	0.0	17.5	18.8
Roundup (Glyphosate) 4 qt/a 105	10.0	25.0				10.0	25.0
202		10.0	25.0	İ	į	10.0	10.0
304		10.0		10.0	ĺ	10.0	10.0
401				į	i	0.0	25.0
	ļ .			i	į		
Mean =	10.0	15.0	25.0	10.0		7.5	17.5

Appendix 2, continued. Plot data summary of weed control using Nature's Avenger Organic RTU Herbicide at 1 DAA.

r					
AOV For SE	ENVU	groundse PERCNT DA	MAGE 0-100% 12	/29/06 1	DAA
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
Total	17	3497.221862		1	rion(i)
		191.666377	63.888792	1.247	0.3441
Replicate Treatment	4	2793.055284	698.263821	13.625	0.0005
Error	10	512.500201			0.0000
AOV For RA		wild rad PERCNT DAN		9/06 1 D	AA
SOURCE			MEAN SQUARE	F	Prob(F)
Total	8	2120.000000			()
Replicate	3	0.000000	0.000000	0.000	1.0000
Treatment	4	2120.000000	0.000000 530.000000	0.000	1.0000
Total Replicate Treatment Error	1	0.000000	0.000000		
AOV For MA	ATMA	pineappl PERCNT DA	MAGE 0-100% 12/	/29/06 1 I	DAA
SOURCE		SUM OF SQUARES		F	Prob(F)
Total	9	1292.500000			
Replicate Treatment	3	2.500000	0.833333		
Treatment	4	1280.000000	320.000000		0.0154
Error		10.000000			
AOV FOR LA	WAW	Henbit PERCNT DAM/	AGE 0-100% 12/29	3/06 1 DA	\A
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	D /
			WIEAN SQUARE	r	Prob(F)
Replicate	3	25.000000	8.333333	0.154	0.9252
Treatment	4	2270.000000	567 500000	10.477	0.9232
Error	12	650.000000	54 166667	10.477	0.0001
AOV For AM	ISTE	2945.000000 25.000000 2270.000000 650.000000 F.neck PERCNT DAM/	AGE 0-100% 12/29	706 1 DA	A
			0		"
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
Total	18	2520.000000		ŕ	
Replicate	3	210.000000	70.000000	2.184	0.1475
Treatment	4	2520.000000 210.000000 1957.500000	489.375000	15.271	0.0002
Error	11	352,500000	32.045455		

Appendix 3. Plot data summary of weed control using Nature's Avenger Organic RTU Herbicide at 4 DAA.

Weed Code		POAAN	MEDCO	STEME	CERVU	EROCI	CAPBP	CHEAL
Crop Code	•	A. blueg	burclove	c. chick	M. chick	Redstem	Shep	Lambsqua
Part Rated		PERCNT	PERCNT	PERCNT	PERCNT	PERCNT	PERCNT	PERCNT
Rating Data Type		DAMAGE	DAMAGE	DAMAGE	DAMAGE	DAMAGE		DAMAGE
Rating Unit		0-100%	0-100%	0-100%	0-100%	0-100%	0-100%	0-100%
Rating Date		1/1/07	1/1/07	1/1/07	1/1/07	1/1/07	1/1/07	1/1/07
Trt-Eval Interval		4 DAA	4 DAA	4 DAA	4 DAA	4 DAA	4 DAA	4 DAA
Treatment	Rate							, 5, 00
Name	Rate Unit Plot							
Untreated	101	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	205	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	301	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	405	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1					-			1.0
	Mean ≃	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Nature's Avenger Org. RTU	102	50.0		-	95.0	10.0	98.0	85.0
	203	60.0	75.0	50.0	95.0	25.0	98.0	
	305	60.0	85.0	95.0	95.0	25.0	98.0	85.0
	403	50.0	90.0	90.0	98.0	25.0	98.0	80.0
			_ :					
Not all A	Mean =	55.0	83.3	78.3	95.8	21.3	98.0	83.3
Nature's Avenger Org. Con	33 % v/v 103	80.0	90.0		98.0		98.0	8.0
	204	85.0		85.0	98.0	25.0	98.0	98.0
	302	75.0	95.0	80.0	95.0	20.0	98.0	95.0
İ	404	50.0	95.0	25.0	98.0	25.0	98.0	95.0
	Moon =	72.5	00.0	00.0	07.0			
Nature's Avenger Org. Con	Mean = 16.7 % v/v 104	25.0	93.3	63.3	97.3	23.3	98.0	74.0
Nature's Averiger Org. Con	201	40.0	30.0 50.0	80.0	95.0	20.0	98.0	90.0
	303	75.0	40.0	15.0	95.0	20.0	95.0	80.0
	402	60.0	75.0	50.0	90.0	30.0	98.0	80.0
	402	00.0	75.0	80.0	98.0	80.0	98.0	i
	Mean =	50.0	48.8	56.3	04 5	40.0	22.2	المما
Roundup (Glyphosate)	4 qt/a 105	10.0	25.0	10.0	94.5	43.3	97.3	83.3
)	202	25.0	20.0	10.0	10.0		40.0	25.0
	304	30.0	15.0	15.0	10.0	EO 0	60.0	اء ۔ ۔ ا
	401	40.0	25.0	10.0	10.0	50.0 15.0	50.0	75.0
		70.0	20.0	10.0	10.01	15.0	75.0	60.0
	Mean =	26.3	21.7	11.7	10.0	32.5	56.3	E2 2
					. 10.01	JZ.5	00.3	53.3

Appendix 3, continued. Plot data summary of weed control using Nature's Avenger Organic RTU Herbicide at 4 DAA.

AOV For Po	OAAN	A. blueg PERCNT DAM	MAGE 0-100% 1/1	/07 4 DAA	·
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
Total	19	15413.750000		•	
Replicate	3	573.750000	191.250000	1.058	0.4031
Treatment	4	12670.000000	3167.500000		0.0001
Error	12	2170.000000	180.833333		0.0001
AOV For M	EDCC	burclove PERCNT DA	MAGE 0-100% 1/1	/07 4 DAA	
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
Total	16	26484.863993			,
Replicate	3	397.087738	132.362579	1.293	0.3353
Treatment	4	25166.116606	6291.529151	61.437	0.0001
Error	9	921.659649	102.406628		0.0001
AOV For ST	ГЕМЕ	c. chick PERCNT DAM	AGE 0-100% 1/1/0	7 4 DAA	
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
Total	16	24968.196395			,
Replicate	3	745.974728	248.658243	0.402	0.7554
Treatment	4	18649.447129	4662.361782	7.530	0.0060
Error	. 9	5572.774538			
AOV For CE	ERVU	M. chick PERCNT DAN	MAGE 0-100% 1/1/	07 4 DAA	
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
Total	18	39865.000000		•	1 100(1)
Replicate	3	19.800000	6.600000	2.719	0.0955
Treatment	4	39818.500000	9954.625000		0.0001
Error	11	26.700000	2.427273		0.0001
AOV For EF	ROCLI	Redstem PERCNT DAN	MAGE 0-100% 1/1/	07 4 DAA	
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
Total	15	6984.582273			,
Replicate	3	370.137740	123.379247	0.396	0.7598
Treatment	4	4119.998698	1029.999674	3.303	0.0706
Error	8	2494.445835	311.805729		
AOV For CA	/PBP	Shep PERCNT DAMAG	SE 0-100% 1/1/07	4 DAA	,,,,,
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
Total	19	30273.800000			- \ /
Replicate	3	130.600000	43.533333	0.959	0.4436
Treatment	4	29598.300000	7399.575000	162.956	0.0001
Error	12	544.900000	45.4083331		
AOV For Ch	IEAL I	ambsqua PERCNT DA	MAGE 0-100% 1/	1/07 4 DAA	
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
Total	16	26902.519690		-	/
Replicate	3	2019.233945	673.077982	1.166	0.3753
1 .					
Treatment Error	4 9	19688.521826	4922.130457	8.528	0.0040

Appendix 3, continued. Plot data summary of weed control using Nature's Avenger Organic RTU Herbicide at 4 DAA.

Weed Code	ERICA	SENVU	RAPRA	MATMA	MALPA	LAMAM	AMSTE
Crop Code	Horsewee	groundse	wild rad	pineappl	mallow	Henbit	F.neck
Part Rated	PERCNT	PERCNT	PERCNT	PERCNT	PERCNT	PERCNT	PERCNT
Rating Data Type	DAMAGE	DAMAGE	DAMAGE	DAMAGE	DAMAGE	DAMAGE	DAMAGE
Rating Unit	0-100%	0-100%	0-100%	0-100%	0-100%	0-100%	0-100%
Rating Date	1/1/07	1/1/07	1/1/07	1/1/07	1/1/07	1/1/07	1/1/07
Trt-Eval Interval	4 DAA	4 DAA	4 DAA	4 DAA	4 DAA	4 DAA	4 DAA
Treatment Rate							
Name Rate Unit Pl				i			
Untreated 10	0.0	0.0	0.0	0.0	0.0	0.0	25.0
20	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30		0.0	0.0	0.0	0.0	0.0	0.0
40	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	}						0.0
Mean	= 0.0	0.0	0.0	0.0	0.0	0.0	6.3
Nature's Avenger Org. RTU 10		30.0	40.0			25.0	50.0
20	3	15.0	85.0			60.0	50.0
30				10.0		10.0	25.0
40	3	40.0		15.0	10.0	25.0	70.0
	ì						
Mean Mean		28.3	62.5	12.5	10.0	30.0	48.8
Nature's Avenger Org. Con 33 % v/v 10		40.0				50.0	50.0
20		75.0				75.0	98.0
30		60.0				25.0	25.0
40	4	25.0	10.0	10.0		40.0	25.0
Mean Mean		50.0	10.0	10.0	,	47.5	49.5
Nature's Avenger Org. Con 16.7 % v/v 10		30.0			7111-1-1-1	25.0	25.0
20		30.0	25.0			10.0	10.0
30		50.0		20.0		25.0	50.0
· 40	2 20.0	20.0		25.0	0.0	10.0	50.0
Mean		32.5	25.0	22.5	0.0	17.5	33.8
Roundup (Glyphosate) 4 qt/a 10		25.0				10.0	25.0
20		10.0	25.0			10.0	10.0
30		0.0		10.0		10.0	10.0
40	1					0.0	25.0
						ļ.	
MeanMean	= 10.0	11.7	25.0	10.0		7.5	17.5

Appendix 3, continued. Plot data summary of weed control using Nature's Avenger Organic RTU Herbicide at 4 DAA.

C. 2012		·····			·
AOV For St	ENVU	groundse PERCNT DA	MAGE 0-100% 1/1	1/07 4 D/	₹A
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
Total	17	8533.888932		•	1 100(1)
Replicate	3		65.370244	0.277	0.8409
Treatment	4	5975.555729	1493.888932	6.324	0.0084
Error		2362.222472			
AOV For RA	APRA	wild rad PERCNT DAM	IAGE 0-100% 1/1/	07 4 DAA	1
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	· F	Prob(F)
Total	8	10032.500000		•	1 .00(1)
Replicate	3	202.500000	67.500000	0.083	0.9595
Treatment	4	9020.000000	2255.000000	2.784	
Error		810.000000	810.0000001		
AOV For MA	AMTA	pineappl PERCNT DA	MAGE 0-100% 1/1	/07 4 DA	A
SOURCE	DF		MEAN SQUARE	F	Prob(F)
Total	9	1055.000000			• •
Replicate	3	10.000000	3.333333	0.444	0.7470
Replicate Treatment	4	1030.000000	257.500000	34.333	0.0285
Error	2	15.000000	7.500000		
AOV For LA	MAM	Henbit PERCNT DAMA	AGE 0-100% 1/1/0	7 4 DAA	
SOURCE		SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
Total		8645.000000			` '
Replicate			308.333333	1.805	0.1999
Treatment				8.298	0.0019
Error	12	2050.000000			
AOV For AM	ISTE	F.neck PERCNT DAMA	NGE 0-100% 1/1/07	7 4 DAA	
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
Total	19	12272.550000			
Replicate	3	563.350000	187.783333	0.384	0.7666
Treatment	4	5838.300000	1459.575000	2.983	0.0634
Error	12	5870.900000	489.241667		

Appendix 4. Plot data summary of weed control using Nature's Avenger Organic RTU Herbicide at 8 DAA.

Weed Code		POAAN	MEDCO	STEME	CERVU	EROCI	CAPBP	CHEAL
Crop Code		A. blueg	burclove	c. chick	M. chick	Redstem	Shep	Lambsqua
Part Rated		PERCNŤ	PERCNT	PERCNT	PERCNT	PERCNT	PERCNT	PERCNT
Rating Data Type		DAMAGE	DAMAGE	DAMAGE	DAMAGE	DAMAGE	DAMAGE	DAMAGE
Rating Unit		0-100%	0-100%	0-100%	0-100%	0-100%	0-100%	0-100%
Rating Date		1/5/07	1/5/07	1/5/07	1/5/07	1/5/07	1/5/07	1/5/07
Trt-Eval Interval		8 DAA	8 DAA	8 DAA	8 DAA	8 DAA	8 DAA	8 DAA
Treatment	Rate					0 0781	0 0,00	U DAA
Name Ra	te Unit Plot							
Untreated	101	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-	205	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	301	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	405	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		!	!			3.3	0.0	0.0
	Mean =	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Nature's Avenger Org. RTU	102	50.0		25.0	98.0	15.0	98.0	98.0
	203	75.0	95.0	98.0	98.0	40.0	98.0	50.0
	305	70.0	90.0	95.0	98.0	98.0	40.0	
	403	50.0	80.0	25.0	98.0	60.0	98.0	98.0
								00.0
	Mean ≃	61.3	88.3	60.8	98.0	53.3	83.5	98.0
Nature's Avenger Org. Con 3	3 % v/v 103	85.0	85.0		98.0		98.0	98.0
	204	80.0		70.0	98.0	50.0	98.0	00.0
	302	60.0	80.0	50.0	98.0	50.0	98.0	
	404	50.0	98.0	25.0	98.0	40.0	98.0	98.0
								55.5
	Mean =	68.8	87.7	48.3	98.0	46.7	98.0	98.0
Nature's Avenger Org. Con 16	7 % v/v 104	50.0	40.0	25.0	98.0	25.0	98.0	90.0
	201	40.0	65.0	25.0	95.0	ļ	95.0	85.0
	303	50.0	50.0	50.0		50.0	98.0	44.5
	402	50.0	75.0	75.0	98.0	25.0	98.0	
					1	}		
D	Mean =	47.5	57.5	43.8	97.0	33.3	97.3	87.5
Roundup (Glyphosate)	4 qt/a 105	25.0	15.0	10.0	15.0		30.0	25.0
	202	30.0	ļ					
	304	25.0	10.0		ł	50.0	50.0	40.0
	4 01	50.0	20.0	10.0	10.0	20.0	75.0	60.0
	., i				}	ŀ		22.0
	Mean =	32.5	15.0	10.0	12.5	35.0	51.7	41.7

Appendix 4. Plot data summary of weed control using Nature's Avenger Organic RTU Herbicide at 8 DAA.

JAOV F	- A A I			<u> </u>	
AOV For F	OAAN	A. blueg PERCNT DA	MAGE 0-100% 1/5	7/07 8 DAA	-
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
Total	19			•	1 100(1)
Replicate	3	70.000000	23.333333	0.158	0.9222
Treatment	4	70.000000 11882.500000	2970.625000		0.0001
Error	12	1707.300000	14/ /Minn/	1	0.000.
AOV For M	IEDC	D burclove PERCNT DA	MAGE 0-100% 1/	5/07 8 DAA	· · · · · · · · · · · · · · · · · · ·
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
Total	16	27740.422226		•	1 100(1)
Replicate	3		103.325879	1.233	0.3536
Treatment	4	26676.088902	6669.022226	79.566	0.0001
Error	9	754.355685	83.817298		0.0001
AOV For S	TEME	c. chick PERCNT DAM	IAGE 0-100% 1/5/0	07 8 DAA	
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Deals/EV
Total	16	18803.356758		F	Prob(F)
Replicate	3	1427.267771	475.755924	0.666	0 5005
Treatment	4	10951.189722	2737.797431	3.835	0.5935
Error	9	6424.899264	713.877696		0.0436
AOV For Ci	ERVU	M. chick PERCNT DAN	MAGE 0-100% 1/5/	07 8 DAA	
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	D (E)
Total	16	40447.300000		f	Prob(F)
Replicate	3	3.700000	1.233333	0.750	0.5400
Treatment	4	40428.800000			0.5493 0.0001
Error	9	14.800000	1.644444	0140.27	0.0001
AOV For EF	ROCH	Redstem PERCNT DAN	/AGE 0-100% 1/5/	07 8 DAA	
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Dual (E)
Total	15	11371.438923	MILAN OQUANE	٣	Prob(F)
Replicate	3	1833.794370	611.264790	1.755	0.0000
Treatment	4	6751.355691	1687,838923	4.846	0.2332
Error	8	2786,288862	348.286108	4.040	0.0279
AOV For CA	YPBP .	Shep PERCNT DAMAG	GE 0-100% 1/5/07	B DAA	
SOURCE	DF		MEAN SQUARE		Duel- (E)
Total	18	31019.311065	WILLIAM OGONCE	F	Prob(F)
Replicate	3	730 553984	243.517995	0.951	0.4404
Treatment	4	730.553984 27472.894792	6868.223698	26.830	0.4494
Error	11	2815.862289	255.987481	20.030	0.0001
AOV For Ch	IEAL I	ambsqua PERCNT DA	MAGE 0-100% 1/	5/07 8 DAA	
SOURCE	DF				
Total	12	30443.927621	MEAN SQUARE	F	Prob(F)
Replicate	3	109.170646	20.00004~		
Treatment	4	29814.761272	36.390215	0.350	0.7917
Error	5		7453.690318	71.671	0.0001
		519,995703	103.999141		

Appendix 4. Plot data summary of weed control using Nature's Avenger Organic RTU Herbicide at 8 DAA.

		ő=\ \	5.554				
Weed Code	ERICA	SENVU	RAPRA	MATMA	MALPA	LAMAM	AMSTE
Crop Code	Horsewee	groundse	wild rad	pineappl	mallow	Henbit	F.neck
Part Rated	PERCNT	PERCNT	PERCNT	PERCNT	PERCNT	PERCNT	PERCNT
Rating Data Type	DAMAGE	DAMAGE	DAMAGE	DAMAGE	DAMAGE	DAMAGE	DAMAGE
Rating Unit	0-100%	0-100%	0-100%	0-100%	0-100%	0-100%	0-100%
Rating Date	1/5/07	1/5/07	1/5/07	1/5/07	1/5/07	1/5/07	1/5/07
Trt-Eval Interval	8 DAA	8 DAA	8 DAA	8 DAA	8 DAA	AAD 8	8 DAA
Treatment Rate	1						
Name Rate Unit Plot							
Untreated 101	0.0	0.0	0.0	0.0	0.0	0.0	
205	0.0	0.0	0.0	0.0	0.0	0.0	0.0
301	0.0	0.0	0.0	0.0	0.0	0.0	0.0
405	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Mean =	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Nature's Avenger Org. RTU 102		40.0	10.0			25.0	25.0
203		75.0				25.0	50.0
305						25.0	50.0
403		50.0		25.0	15.0	20.0	50:0
M			40.0	0.50	4= 0		
Mean =	·	55.0	10.0	25.0	15.0	23.8	43.8
Nature's Avenger Org. Con 33 % v/v 103		25.0				25.0	40.0
204		85.0				30.0	50.0
302		50.0				10.0	25.0
404		25.0		15.0		50.0	25.0
Mean ≃		46.3		15.0		28.8	35.0
Nature's Avenger Org. Con 16.7 % v/v 104	 		-	10.0		15.0	40.0
201		30.0	25.0	15.0		15.0	15.0
303		30.0		25.0		25.0	25.0
402	25.0	25.0		25.0	10.0	25.0	75.0
M-20-00	25.0	00.0	05.0	04 3	40.0	00.5	
Mean =	25.0	28.3	25.0	21.7	10.0	20.0	38.8
Roundup (Glyphosate) 4 qt/a 105		15.0	0.50			10.0	40.0
202	i	40.0	85.0	46.5		0.0	25.0
304	1			10.0		0.0	20.0
401						0.0	25.0
Mean =		27.5	85.0	10.0		2.5	27.5

Appendix 4. Plot data summary of weed control using Nature's Avenger Organic RTU Herbicide at 8 DAA.

AOV For SE	NVU	groundse PERCNT DA	MAGE 0-100% 1/5	5/07 8 DA	A
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
Total	15	10550.140203			
Replicate	3	1719.584722	573.194907	2.732	0.1137
Treatment	4	7152.223645	1788.055911	8.523	0.0055
Error	_	1678.331837			
AOV For M	ATMA	pineappl PERCNT DA	MAGE 0-100% 1/5	/07 8 DA	Α
	٠			_	5 1.75
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
Total Replicate Treatment	9	1635.555820			
Replicate	3	13.333552	4.444517	0.167	0.9106
			392.222268	14.708	0.0647
Error		53.333197			
AOV For LA	MAM	Henbit PERCNT DAMA	AGE 0-100% 1/5/0	7 8 DAA	
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
				,	, 100(1 /
Total Replicate	3	130.000000		0.589	0.6337
Treatment	4	2687 500000	671.875000		
Error		882.500000			0.0010
		F.neck PERCNT DAM/			
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
Total	18	7980.000000			
Replicate		310.000000	103.333333	0.392	0.7615
Treatment	4	4767.500000	1191.875000	4.517	0.0211
Error	11	2902.500000	263.863636		

Appendix 5. Plot data summary of weed control using Nature's Avenger Organic RTU Herbicide at 15 DAA.

Weed Code		POAAN	MEDCO	STEME	CERVU	EROCI	CAPBP	CHEAL
Crop Code		A. blueg	burclove	c. chick	M. chick	Redstem	Shep	Lambsqua
Part Rated		PERCNT	PERCNT	PERCNT	PERCNT	PERCNT	PERCNT	PERCNT
Rating Data Type		DAMAGE	DAMAGE	DAMAGE	DAMAGE	DAMAGE	DAMAGE	DAMAGE
Rating Unit		0-100%	0-100%	0-100%	0-100%	0-100%	0-100%	0-100%
Rating Date		1/12/07	1/12/07	1/12/07	1/12/07	1/12/07	1/12/07	1/12/07
Trt-Eval Interval		15 DAA	15 DAA	15 DAA	15 DAA	15 DAA	15 DAA	15 DAA
Treatment Rat	е					1		
Name Rate Uni	t Plot	ļ						
Untreated	101	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	205	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	301	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	405	0.0	0.0	0.0	0.0	0.0	0.0	0.0
								-
	Mean =	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Nature's Avenger Org. RTU	102	50.0	90.0	75.0	95.0	25.0	98.0	80.0
• •	203	75.0	95.0	75.0	95.0	50.0	95.0	99.0
	305	50.0	50.0	50.0	95.0	50.0	95.0	75.0
	403	65.0	25.0	85.0	95.0	50.0	98.0	80.0
				ŀ				
	Mean =	60.0	65.0	71.3	95.0	43.8	96.5	83.5
Nature's Avenger Org. Con 33 % v	/v 103	60.0	75.0		90.0		98.0	98.0
	204	75.0	i	80.0	98.0	60.0	98.0	99.0
	302	50.0	70.0	75.0	95.0	25.0	95.0	99.0
	404	40.0	75.0	75.0	95.0	40.0	98.0	95.0
		1					}	
	Mean =	56.3	73.3	76.7	94.5	41.7	97.3	97.8
Nature's Avenger Org. Con 16.7 % v	/v 104	30.0	50.0	80.0	95,0	25.0	98.0	99.0
-	201	50.0	80.0	75.0	95.0		98.0	98.0
	303	50.0	50.0	60.0	85.0	50.0	95.0	98.0
	402	50.0	60.0	70.0	80.0	50.0	98.0	
				1	1			
	Mean =	45.0	60.0	71.3	88.8	41.7	97.3	98.3
Roundup (Glyphosate) 4 qt/a		25.0	75,0	40.0	30.0		70.0	40.0
	202	25.0					95.0	
•	304	50.0	75.0	50.0	50.0	50.0	98.0	50.0
	401	60.0	50.0	40.0	40.0	60.0	98.0	60.0
	.01	00.0	00.0	, ,,,,,	10.0	00.0	00.0	1

Appendix 5, continued. Plot data summary of weed control using Nature's Avenger Organic RTU Herbicide at 15 DAA.

AOV For PC)AAN	A. blueg PERCNT DAN	/AGE 0-100% 1/1	2/07 15 DA	A
SOURCE	DF	SUM OF SQUARES		F	Prob(F)
Total	19	11523.750000			` '
Replicate	3	413.750000	137.916667	0.847	0.4946
Treatment	4	9155.000000	2288.750000	14.049	0.0002
Error	12	413.750000 9155.000000 1955.000000	137.916667 2288.750000 162.916667		
AOV For ME	DCO	burclove PERCNT DA	MAGE 0-100% 1/1	2/07 15 D	AA
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
Total	17	18792.222256			
Replicate	3	1310.000000	436.666667 3602.222256 307.333323	1.421	0.2938
Treatment	4	1310.000000 14408.889025 3073.333232	3602.222256	11.721	0.0009
Error	10	3073.333232	307.333323		
AOV For ST	EME	c. chick PERCNT DAM	AGE 0-100% 1/12	/07 15 DA	A
SOURCE	DF	SUM OF SQUARES		F	Prob(F)
Total	17	17480.555055 202.777785 16509.720222 768.057049			
Replicate	3	202.777785	67.592595		0.4838
Treatment	4	16509.720222	4127.430055 76.805705	53.739	0.0001
Error	10	768.057049	76.805705		
AOV For CE	RVU	M. chick PERCNT DAN	AAGE 0-100% 1/12	2/07 15 DA	₹A
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
Total	18	29102.550000			
Replicate	3	55.350000	18.450000	0.586	0.6367
Treatment	4	29102.550000 55.350000 28700.800000 346.400000	7175.200000	227.850	0.0001
Error	11	346.400000	31.490909		
AOV For ER	ROCLI	Redstem PERCNT DAN	//AGE 0-100% 1/1	2/07 15 DA	¥A ∫
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
Total	15	8673.747248	4.0		
Replicate	3	445.969977	148.656659	1.075	0.4127
Treatment	4	8673.747248 445.969977 7121.664551 1106.112720	1780.416138		0.0015
Error	8	1106.112720	138.264090		
AOV For GA	/LRL	Shep PERCNT DAMAC	3E 0-100% 1/12/07	7 15 DAA	
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
l					` '
Total	19	29783,750000 [1
Total Replicate	19 3	29783,750000 j 87,750000	29.250000	0.720	0.5590
Total Replicate Treatment	19 3 4	29783.750000 87.750000 29208.500000	29.250000 7302.125000	0.720 179.745	
Total Replicate Treatment Error	19 3 4 12	29783.750000 87.750000 29208.500000 487.500000	29.250000 7302.125000 40.625000	179.745	
Replicate Treatment Error AOV For CH	19 3 4 12 IEAL	29783.750000 87.750000 29208.500000 487.500000 Lambsqua PERCNT D	29.250000 7302.125000 40.625000 AMAGE 0-100% 1	179.745	0.0001
Total Replicate Treatment Error AOV For CH	19 3 4 12 IEAL DF	29783.750000 87.750000 29208.500000 487.500000 Lambsqua PERCNT D/ SUM OF SQUARES	AMAGE 0-100% 1/	179.745 /12/07 15 I	0.0001
AOV For CH	IEAL	Lambsqua PERCNT DA SUM OF SQUARES 28435.300691	AMAGE 0-100% 1/ MEAN SQUARE	179.745 12/07 15 I F	0.0001 DAA
AOV For CH SOURCE	IEAL DF	Lambsqua PERCNT DA SUM OF SQUARES 28435.300691	AMAGE 0-100% 1/ MEAN SQUARE	179.745 12/07 15 I F	0.0001 DAA
AOV For CH SOURCE Total	HEAL DF 17	Lambsqua PERCNT DA SUM OF SQUARES 28435.300691	AMAGE 0-100% 1	179.745 12/07 15 I F	0.0001 DAA Prob(F) 0.5508

Appendix 5, continued. Plot data summary of weed control using Nature's Avenger Organic RTU Herbicide at 15 DAA.).

Weed Code			ERICA	SENVU	RAPRA	MATMA	MALPA	LAMAM	AMSTE
Crop Code			Horsewee	groundse	wild rad	pineappl	mailow	Henbit	F.neck
Part Rated			PERCNT	PERCNT	PERCNT	PERCNT	PERCNT	PERCNT	PERCNT
Rating Data Type			DAMAGE	DAMAGE	DAMAGE	DAMAGE	DAMAGE	DAMAGE	DAMAGE
Rating Unit			0-100%	0-100%	0-100%	0-100%	0-100%	0-100%	.0-100%
Rating Date			1/12/07	1/12/07	1/12/07	1/12/07	1/12/07	1/12/07	1/12/07
Trt-Eval Interval			15 DAA	15 DAA	15 DAA	15 DAA	15 DAA	15 DAA	15 DAA
Treatment		Rate							
Name	Rate	Unit Plot	l						
Untreated		101	0.0	0.0	0.0	0.0	0.0	0.0	
		205	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		301	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		405	0.0	0.0	0.0	0.0	0.0	0.0	0.0
]						
		Mean =	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Nature's Avenger Org. RTU		102		30.0	25.0			25.0	10.0
		203	1	25.0	75.0	30.0		15.0	25.0
		305				25.0		25.0	50.0
		403	1	40.0		40.0	25.0	25.0	50.0
		Mean =	.	31.7	50.0	31.7	25.0	22.5	33.8
Nature's Avenger Org. Con	33	% v/v 103		25.0				25.0	10.0
,		204		75.0				30.0	50.0
		302		40.0				25.0	30.0
		404		50.0		40.0	40.0	10.0	25.0
		Mean =	} .	47.5		40.0	40.0	22.5	28.8
Nature's Avenger Org. Con	16.7	% v/v 104		50.0				25.0	15.0
		201		10,0	50.0			15.0	10.0
•		303		40.0		25.0		25.0	25.0
		402	75.0	30.0		20.0	25.0	15.0	25.0
		Mean =	75.0	32.5	50.0	22.5	25.0	20.0	18.8
Roundup (Glyphosate)	4	qt/a 105	 	15.0				15.0	25.0
	-	202		10.0	50.0			15.0	
		304		60.0		25.0	1	10.0	
		401]		=3.5	1	10.0	25.0
		Mean =	10.0	28.3	50.0	25.0	<u> </u>	12.5	22.5

Appendix 5, continued. Plot data summary of weed control using Nature's Avenger Organic RTU Herbicide at 15 DAA.

AOV For SE	ENVU	groundse PERCNT DA	MAGE 0-100% 1/	12/07 15	DAA
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Drob/E\
Total	17			Г	Prob(F)
			124.814831	0.361	0.7827
Replicate Treatment	⊿	4702 222205	1198.055551	3.464	0.7627
Error	10	3458.888854			0.0000
		wild rad PERCNT DAM			ΔΔ
		mia taa i Eliotti Bitti	1/10E 0-100/0 1/12	ם טו זטו.	MA
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
Total	7	8750.000000		·	,
Replicate	3	312.500000	104.166667	0.111	0.9423
Treatment	3	7500.000000	104.166667 2500.000000	2.667	0.4164
Total Replicate Treatment Error AOV For M	1	937.500000	937.500000		
AOV For MA	AMTA	pineappl PERCNT DA	MAGE 0-100% 1/1	2/07 15 I	DAA
l					
SOURCE	DF	SUM OF SQUARES		F	Prob(F)
Total	10	3704.721212			
Replicate Treatment	3	10.832242	3.610747		0.9598
Treatment	4	3575.554425	893.888606		0.0141
Error		118.334545			
AOV For LA	MAM	Henbit PERCNT DAM/	4GE 0-100% 1/12/	07 15 DA	VA
SOURCE	DF	CUM OF COUNDED	MEAN COMADE	-	D - 1 (E)
Total	10	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
Donlingto	שו	1895.000000	35.000000	4 242	0.0457
Treatment	./	1470.000000	367.500000		0.3157 0.0002
SOURCE Total Replicate Treatment Error	4 12	320.000000	26.666667		0.0002
AOV For AN	12 1STE	F.neck PERCNT DAMA			
	NO IL	I THEOR I LIVORT DAINN	10L 0-10U/0 1/12/	אט פו זט	VA
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F	Prob(F)
Total	18	5063.750000		,	/
Replicate	3	683.750000	227.916667	1.477	0.2745
Treatment	4	2682.500000	670.625000	4.346	0.0238
Error	11	1697.500000	154.318182	· · · · · · ·	

Henbit (Lamium amplexicaule)

Nature's Avenger Organic Herbicide (EPA Reg. No. 82052-1)

Consultant/Applicator:

Dr. Fred Yelverton

North Carolina State University Affiliation: Name

Williams Hall 4401C Address:

PO Box 7620

Raleigh, NC 27695-7620

Repo	Report: North Carolina State University				Percent Control (%)	ontrol (%)		
Repo	Report Date: December 5, 2006			Applic	Application Date: November 9, 2006	November 9	, 2006	
		Application	4	E	4.7	E	9	E
	l reatments	Kate (% AI)	2 DAI	A.I.	4 DAI	AI	IY DAT	AI
	Untreated		0.0	q	0.0	၁	0.0	၁
2	Nature's Avenger RTU-162.5 gpa	17.5 %	98.0	а	99.0	æ	98.0	сd
3	BurnOut RTU - 162.5 gpa		0.96	83	0.86	B	85.0	þ
4	Roundup RTU - 162.5 gpa		0.0	þ	15.0	ф	100.0	ಚ
	LSD (p= 0.05)		4.7		5.0		7.8	

Means followed by same letter do not significantly differ (p = 0.05)

Conclusions: Two days after treatment, both Nature's Avenger RTU and BurnOut RTU controlled 94-98 % of henbit. At nineteen days, Nature's Avenger RTU and Roundup RTU provided very good weed control while BurnOut RTU was significantly less

Carolina geranium (Geranium carolinianum)

Nature's Avenger Organic Herbicide (EPA Reg. No. 82052-1)

Consultant/Applicator:

Name

Dr. Fred Yelverton

Affiliation:

North Carolina State University

Address:

Williams Hall 4401C

PO Box 7620

Raleigh, NC 27695-7620

	ort: North Carolina State University ort Date: December 5, 2006		Percent Control (%) Application Date: November 9, 2006							
-	Treatments	Application Rate (% AI)	2 D.	2 DAT		4 DAT		19 DAT		
1	Untreated		0.0	Ъ	0.0	đ	0.0	c		
2	Nature's Avenger RTU-162.5 gpa	17.5 %	98.0	a	100.0	a	98.0	a		
3	BurnOut RTU – 162.5 gpa		94.0	a	93.0	b	79.0	b		
4	Roundup RTU – 162.5 gpa		6.0	b	15.0	c	100.0	a		
	LSD (p= 0.05)		6.1		6.4		16.4			

Means followed by same letter do not significantly differ (p = 0.05)

Conclusions:

The results were quite similar to those for Henbit with the exception of Nature's Avenger RTU being the best of all treatments at time point 4 DAT.

Hairy vetch (Vicia villosa villosa)

Nature's Avenger Organic Herbicide (EPA Reg. No. 82052-1)

Consultant/Applicator:

Name

Dr. Fred Yelverton

Affiliation:

North Carolina State University

Address:

Williams Hall 4401C

PO Box 7620

Raleigh, NC 27695-7620

_	ort: North Carolina State University ort Date: December 5, 2006		Percent Control (%) Application Date: November 9, 2006							
	Treatments	Application Rate (% AI)	2 DAT		4 DAT		19 DAT			
1	Untreated		0.0	b	0.0	b	0.0	С		
2	Nature's Avenger RTU-162.5 gpa	17.5 %	18.0	a	63.0	a	49.0	b		
3	BurnOut RTU - 162.5 gpa		19.0	a	19.0	b	0.0	c		
4	Roundup RTU – 162.5 gpa		1.0	b	9.0	b	99.0	a		
	LSD (p= 0.05)		14.5		33.5		45.2			

Means followed by same letter do not significantly differ (p = 0.05)

Conclusions:

Hairy vetch was a difficult-to-control weed in this study. The efficacy of Nature's Avenger was the best four days after treatment at which point it controlled more then 60 % of hairy vetch. Fifteen days later, it controlled less than 50 % of weeds whereas Roundup RTU provided a complete control of hairy vetch at this time point.

Fred Yelverton NC State Trial ID# 07-T10

Formulation Characteristics:

There were no mixing, spraying, or plot coverage concerns from any of the treatments. All of the chemicals were applied in clear 2-liter bottles so symptoms could be documented if observed.

Henbit and Carolina geranium observations:

Nature's Avenger burned out henbit and geranium 85% in approximately 4 hours while Burnout provided 20% burn of both weed species at this time. Roundup RTU displayed no symptoms at this time.

By 2 days, Nature's Avenger and Burnout were providing 94%+ control or burndown of both weed species with Roundup RTU still showing no symptoms on henbit and only 6% injury on geranium (slight yellowing).

Roundup RTU at 4 days was beginning to show injury symptoms of 15% (yellowing) on both species.

By 26 days after treatment, new henbit and geranium plants were germinating most noticeably in the Nature's Avenger and Burnout plots. Henbit control was reduced to 85% for Avenger and only 50% for Burnout, while geranium control was reduced to 94% for Avenger and only 81% for Burnout. Roundup RTU was controlling both species 100% at this time with no new germination occurring.

Hairy vetch observations:

At 4 hours after treatment, Nature's Avenger provided only 10% burn of hairy vetch. There were no symptoms from Burnout or Roundup RTU.

2 days after treatment, Nature's Avenger and Burnout injured hairy vetch 18 and 19%, respectively. Roundup RTU symptoms not observed at this time.

4 days after treatment, Nature's Avenger injured hairy vetch 63% and Burnout injured only 19%. Roundup RTU injured hairy vetch 9% at this time.

By 26 days after treatment, Nature's Avenger was providing 66% hairy vetch control. Hairy vetch had completely recovered in the Burnout plots (0% control). Roundup RTU was providing 98% control at this time.

Summary:

Nature's Avenger provided more complete control of henbit, Carolina geranium and hairy vetch than Burnout. Due to higher than average rainfall in October and November (3+ and 7+ inches, respectively), these weeds have continued to germinate which have resulted in lower control ratings at 26 days after treatment. These herbicides appear to have no or very little residual soil effects as indicated by the new flush of weed germination after application. It will be important to apply these contact, postemergence herbicides after all weeds have germinated to avoid having to make repeat applications.

POSTEMERGENCE WINTER ANNUAL BROADLEAF WEED CONTROL IN COMMON BERMUDAGRASS USING ORGANIC HERBICIDES VS ROUNDUP RTU

Trial ID: 07-T10

Protocol ID: 07-T10

Location: SAMPSON COUNTY

Study Director: L.S. WARREN Investigator: Fred Yelverton

Reps: 4

Plots: 4 by 8 feet

Spray vol: 162.5 gal/ac

Mix size: 0.375 gallons (min .4775)

Trt Treatment No. Name

Rate Growth Appl Amt Product Plot No. By Rep Type Rate Unit Stage Code to Measure

NATURE'S AVENGER RTU L

162.5 GAL/A NOV 9 A

1419.4 ml/mx 104 202 303 402

BURNOUT RTU

162.5 GAL/A NOV 9 A

1419.4 ml/mx 103 201 304 403

ROUNDUP RTU

L 162.5 GAL/A NOV 9 A 1419.4 ml/mx 101 204 302 401

CHECK

102 203 301 404

Sort Order: Treatment

POSTEMERGENCE WINTER ANNUAL BROADLEAF WEED CONTROL IN COMMON BERMUDAGRASS USING ORGANIC HERBICIDES VS ROUNDUP RTU

Trial ID: 07-T10

Protocol ID: 07-T10

Location: SAMPSON COUNTY

Study Director: L.S. WARREN Investigator: Fred Yelverton

General Trial Information

Study Director: L.S. WARREN

Title: RESEARCH ASSOCIATE

Affiliation: NORTH CAROLINA STATE UNIVERSITY

Postal Code:

27695

E-mail: leon warren@ncsu.edu

Investigator: Fred Yelverton
Affiliation: NORTH CAROLINA STATE UNIVERSITY
Postal Code: 27695 E-mail: fred

Title: PROFESSOR

E-mail: fred_yelverton@ncsu.edu

Trial Location

City:

CLINTON

Trial Status:

COMPLETED

State/Prov.: NC

Postal Code: 28328

Initiation Date:

11-09-06

Country:

USA

Objectives:

TO EVALUATE ORGANIC HERBICIDES VS ROUNDUP RTU FOR POSTEMERGENCE WINTER ANNUAL BROADLEAF WEED CONTROL IN COMMON BERMUDAGRASS

Cooperator/Landowner

Cooperator: RAY GAINEY

Country: USA

Phone No: 910/533-3804

City:

CLINTON

State/Prov: NC

Postal Code: 28328

Crop Description

Crop 1: CYNDA Cynodon dactylon

Bermuda grass

Variety: COMMON

BBCH Scale:

BGRM

Pest Description

Pest 1 Type: W Code: LAMAM Lamium amplexicaule

Common Name: Henbit

Pest 2 Type: W Code: GERCA Geranium carolinianum

Common Name: Carolina geranium

Pest 3 Type: W Code: VICVI Vicia villosa villosa

Common Name: Hairy vetch

Site and Design

Plot Width, Unit: 4

FT

Site Type:

Plot Length, Unit: 8

FT

Tillage Type: NA

Replications:

Study Design: Randomized Complete Block

Soil Description

0.51 % OM:

Texture:

CLAY LOAM

TURF - RESEARCH

5.6 pH:

CEC:

Fert. Level: GOOD

Moisture Conditions

Overall Moisture Conditions: OCT 3.05"; NOV 7.26"

6.3

Closest Weather Station: HORTICULTURAL CROP RES STA

Distance: 5

Unit: MI

```
Application Description
                            11-09-06
Application Date:
                            1:30 PM
Time of Day:
Application Method:
                            SPRAY
Application Timing:
                            POST
Application Placement:
                            BROFOL
                            L.S. WARREN
Applied By:
Air Temperature, Unit:
                            74
                                 Γ
% Relative Humidity:
Wind Velocity, Unit:
                            4.2 MPH
Dew Presence (Y/N):
                            N
Soil Temperature, Unit:
                            66
Soil Moisture:
                            MOIST
% Cloud Cover:
                              Crop Stage At Each Application
                           Α
Crop 1 Code, BBCH Scale:
                           CYNDA BGRM
  Stage Scale Used:
                           BBCH
  Stage Majority, Percent: MOWED
  Height, Unit:
                           1.5
                                   IN
                              Pest Stage At Each Application
Pest 1 Code, Disc., Scale: LAMAM W
  Stage Majority, Percent: 2-4 LF 95
  Height, Unit:
  Density, Unit:
Pest 2 Code, Disc., Scale: GERCA W
  Stage Majority, Percent: 2-4 LF 95
  Height, Unit:
                           1.5
  Density, Unit:
                           1
                                   FT2
Pest 3 Code, Disc., Scale: VICVI W
  Stage Majority, Percent: 2-4 LF 95
  Height, Unit:
                           2.5
  Density, Unit:
                           1
                                   FT2
                              Application Equipment
                            BACSPR
Appl. Equipment:
                                       PSI
Operating Pressure, Unit:
                            28
Nozzle Type:
                            FLAT FAN
Nozzle Size:
                            XR 8002VS
Nozzle Spacing, Unit:
                                  ΙN
Band Width, Unit:
                             40
                                  ΙN
Boom Length, Unit:
                             40
                                  IN
Boom Height, Unit:
                            10
Ground Speed, Unit:
                             0.6 MPH
                            WATER
Carrier:
Spray Volume, Unit:
                            162.5
                                     GPA
                            0.375
Mix Size, Unit:
                            COMCO2
Propellant:
Tank Mix (Y/N):
```

12-05-06 (07-T10)

North Carolina State University

POSTEMERGENCE WINTER ANNUAL BROADLEAF WEED CONTROL IN COMMON BERMUDAGRASS USING ORGANIC HERBICIDES VS ROUNDUP RTU

Trial ID: 07-T10

Protocol ID: 07-T10

Location: SAMPSON COUNTY

Study Director: L.S. WARREN
Investigator: Fred Yelverton

Trial Comments

11-09-06: SPRAYER CALIBRATED TO DELIVER 162.5 GPA PER PASS AT 0.6 MPH (9 SECONDS PER PLOT)

11-28-06 AND 12-05-06: LOWER LAMAM CONTROL RATINGS DUE TO NEW GERMINATION AFTER EVALUATION ON 11-13-06; LOWER GERCA AND VICVI RATINGS DUE MOSTLY TO RECOVERY FROM INITIAL APPLICATION

POSTEMERGENCE WINTER ANNUAL BROADLEAF WEED CONTROL IN COMMON BERMUDAGRASS USING ORGANIC HERBICIDES VS ROUNDUP RTU

Trial ID: 07-T10

Protocol ID: 07-T10

Location: SAMPSON COUNTY

Study Director: L.S. WARREN Investigator: Fred Yelverton

Pes Pes Rat Rat Rat Ass Day	st Type st Code st Name ing Date ing Data Type ing Unit sessed By ys After First/Last Applic. Eval Interval M Action Codes						W Weed LAMAM Henbit 11-09-06 BURN PERCENT L.S. WARRE 0 0 0 DA-A P	:N	W Weed LAMAM Henbit 11-11-06 CONTROL PERCENT L.S. WARRE 2 2 2 DA-A P		W Weed LAMAM Henbit 11-13-06 CONTROL PERCENT L.S. WARRE 4 4 4 DA-A P	:N
	Treatment	Form		Rate	Growth		4		^		_	
NO.	Name	ı ype	Rate	Unit	Stage	Code	7	i	2		3	
1	NATURE'S AVENGER RTU	L	162.5	GAL/A	NOV 9	Α	85	a	98	а	99	а
2	BURNOUT RTU	L	162.5	GAL/A	NOV 9	Α	20	b	96	а	98	а
3	ROUNDUP RTU	L	162.5	GAL/A	NOV 9	Α	0	C	0	b	15	b
4	CHECK						0	C	0	b	0	С
	O (P=.05)						13.3		4.7		5.0	
	ndard Deviation						8.3		2.9		3.1	
CV							31.75	,	6.02		5.87	
Replicate F							0.360	1	0.673		1.461	
Replicate Prob(F)							0.7834		0.5896		0.2893	
	atment F						93.480		1471.041		1154.931	
Treatment Prob(F) 0.0001 0.0001 0.0001												

Means followed by same letter do not significantly differ (P=.05, LSD)

Mean comparisons performed only when AOV Treatment P(F) is significant at mean comparison OSL.

Pest Type Pest Code Pest Name Rating Date Rating Data Type Rating Unit Assessed By Days After First/Last Applic. Trt-Eval Interval ARM Action Codes						W Weed LAMAM Henbit 11-28-06 CONTROL PERCENT L.S. WARRE 19 19 19 DA-A P	W Wee LAMAN Henbit 12-05-0 CONTF PERCE N L.S. WA 26 26 26 DA-A	1 06 ROL ENT ARREN	W Weed GERCA Carolina 11-09-06 BURN PERCEN L.S. WA 0 0 0 DA-A P	ge> }
Trt Treatment No. Name	Form Type	Rate	Rate Unit	Growth Stage		4	5		6	
1 NATURE'S AVENGER RTU	L	162.5	GAL/A	NOV 9	Α	98	a 85	· b	85	а
2 BURNOUT RTU	L	162.5	GAL/A	NOV 9	Α	85	b 50	С	20	b
3 ROUNDUP RTU	L	162.5	GAL/A	NOV 9	Α	100	a 100	а	0	С
4 CHECK						0	c 0	d	0	С
LSD (P=.05) Standard Deviation CV Replicate F Replicate Prob(F) Treatment F Treatment Prob(F)						7.8 4.9 6.91 1.356 0.3170 379.419 0.0001	9.4 5.9 10.02 0.871 0.4910 226.97 0.0001		13.3 8.3 31.75 0.360 0.7834 93.480 0.0001	

Pest Type Pest Code Pest Code Pest Name Rating Date Rating Data Type Rating Unit Assessed By Days After First/Last Applic. Trt-Eval Interval ARM Action Codes						W Weed GERCA Carolina ge> 11-11-06 CONTROL PERCENT L.S. WARRE 2 2 2 DA-A P	W Weed GERCA Carolina ge: 11-13-06 CONTROL PERCENT N L.S. WARRI 4 4 4 DA-A		W Weed GERCA Carolina ge> 11-28-06 CONTROL PERCENT L.S. WARRE 19 19 19 DA-A P	
Trt Treatment	Form		Rate	Growth		7				
No. Name	ı ype	Rate	Unit	Stage	Code		8		9	
1 NATURE'S AVENGER RTU	L	162.5	GAL/A	NOV 9	Α	98	a 100	а	98	а
2 BURNOUT RTU	L	162.5	GAL/A	NOV 9	Α	94	a 93	þ	79	b
3 ROUNDUP RTU	L	162.5	GAL/A	NOV 9	Α	6	b 15	С	100	а
4 CHECK						0 .	c0 .	d	0	С
LSD (P=.05) Standard Deviation CV						6.1 3.8 7.73	6.4 4.0 7.64	 ,	16.4 10.3 14.86	
Replicate F Replicate Prob(F) Treatment F Treatment Prob(F)				·		0.714 0.5678 784.714 0.0001	0.088 0.9648 680.000 0.0001		1.602 0.2563 83.987 0.0001	

Pest Type Pest Code Pest Name Rating Date Rating Data Type Rating Unit Assessed By Days After First/Last Applic. Trt-Eval Interval ARM Action Codes	W Weed W Weed W Weed GERCA VICVI VICVI Carolina ge> Hairy vetch Hairy vetch 12-05-06 11-09-06 11-11-06 CONTROL BURN CONTROL PERCENT PERCENT L.S. WARREN L.S. WARREN 26 26 0 0 2 2 26 DA-A 0 DA-A 2 DA-A P P P
Trt Treatment Form Rate Growth No. Name Type Rate Unit Stage	ppl code 10 11 12
1 NATURE'S AVENGER RTU L 162.5 GAL/A NOV 9	
2 BURNOUT RTU L 162.5 GAL/A NOV 9	. 81 b0 b19 a
3 ROUNDUP RTU L 162.5 GAL/A NOV 9	. 100 a0 b1 b
4 CHECK	0 c0 b0 b
LSD (P=.05) Standard Deviation CV	8.1 0.0 14.5 5.1 0.0 9.1 7.41 0.0 96.97
Replicate F Replicate Prob(F) Treatment F Treatment Prob(F)	1.998 0.000 0.681 0.1850 1.0000 0.5857 333.068 0.000 4.966 0.0001 1.0000 0.0265

Pe Ra Ra Ra As Da Trt AR	st Type st Code st Name ting Date ting Data Type ting Unit sessed By ys After First/Last ApplicEval Interval M Action Codes						W Weed VICVI Hairy vetch 11-13-06 CONTROL PERCENT L.S. WARRE 4 4 4 DA-A P	N	W Weed VICVI Hairy vetch 11-28-06 CONTROL PERCENT L.S. WARRE 19 19	N	W Weed VICVI Hairy vetch 12-05-06 CONTROL PERCENT L.S. WARRE 26 26 26 DA-A P	N
	Treatment Name	Form Type	Rate	Rate Unit	Growth Stage		13		14		15	
1	NATURE'S AVENGER RTU	L.	162.5	GAL/A	NOV 9	Α	63	а	49	b	66	b
2	BURNOUT RTU	L	162.5	GAL/A	NOV 9	Α	19	b	0	С	0	С
3	ROUNDUP RTU	L	162.5	GAL/A	NOV 9	Α	9	b	99	а	98	а
4	CHECK						0	b	0	С	0	С
	O (P=.05) Indard Deviation						33.5 20.9 93.11		45.2 28.3 76.46		25.8 16.1 39.16	
Replicate F Replicate Prob(F) Treatment F Treatment Prob(F)							1.377 0.3113 7.016 0.0099		1.000 0.4363 11.205 0.0022		0.836 0.5072 37.402 0.0001	·

Avenger® Weed Killer

Avenger® Weed Killer Concentrate Active Ingredients:

EPA Registration: Yes, #82052-1 Patented Formula: Yes

Avenger® Weed Killer Ready To Use Active Ingredients:

EPA Registration: Yes, #82052-3 Patented Formula: Yes

- · Faster acting Visible results in 2 hours or less.
- · Works in cool & cloudy conditions (as low as 40° F).
- More efficient Provides more coverage per concentrated gallon. One gallon of concentrate mixed at a maximum dilution ratio of (1:6 [1 part Avenger® / 6 parts H20]) will make 7 gallons of final spray volume.
- Easier to use. Emulsion technology (white milky spray) allows you to visually reference your spray target.
- U.S. Environmental Protection Agency (EPA) registered label.
 In evaluating a pesticide registration application, the EPA assess a wide variety of potential human health and environmental effects associated with the use of the product. The company registering the product must provide data studies that comply with EPA testing guidelines. Source EPA.gov
- · More effective Longer suppression times and kill rates

BurnOut II Weed & Grass Killer

BurnOut II Concentrate
Active Ingredients:
Clove Oil 8%
Citric Acid 24%
Inert Ingredients: 68%
EPA Registration: Exempt from federal registration
under section 25(b) of the Federal Insecticide,
Fungicide, and Rodenticide Act (FIFRA)
Patented Formula: No

inert ingredients. 92% EPA Registration: Exempt from federal registration under section 25(b) of FIFRA. Patented Formula: No

Works in warm & sunny conditions (generally 60° F).
 Less efficient - Provides less coverage per concentrated gallon.
 One gallon of concentrate mixed at a maximum dilution ratio of (1:3 [1 part BurnOut II / 3 parts H20]) will make 4 gallons of final spray volume. Harder to control weeds require a (1:2 [1 part BurnOut II / 2 parts H20]) dilution ratio. At this ratio, one gallon of

CHGANICS

de

- concentrate will make 3 gallons of final spray volume
 Harder to use. Brown spray makes it more difficult to visually target and cover grases and weeds.
- Not registered by the EPA. Qualifies for exemption under under section 25(b) of the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA). Source BurnOut II Concentrate Label.
- · Less effective Shorter suppression times and more regrowth

The dandelion treated with Avenger® Weed Killer has terminated. The weed treated with BurnOut II shows regrowth. Photos taken 16 days after treatment. Sunny, 60F.

VS.

COMPAR-SOZ

Cutting Edge Formulations, Inc. • 3057 Summer Oak Place • Buford, GA 30518 • 866.906.9333 • avengerorganics.com